/*
 * FreeRTOS Kernel V10.3.1
 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * http://www.FreeRTOS.org
 * http://aws.amazon.com/freertos
 *
 * 1 tab == 4 spaces!
 */

/* Standard includes. */
#include <limits.h>

/* Scheduler includes. */
#include "FreeRTOS.h"
#include "task.h"

#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 1 )
    /* Check the configuration. */
    #if ( configMAX_PRIORITIES > 32 )
        #error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32.  It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
    #endif
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

#if ( configISR_STACK_SIZE < ( configMINIMAL_STACK_SIZE * 2 ) )
    #warning configISR_STACK_SIZE is probably too small!
#endif /* ( configISR_STACK_SIZE < configMINIMAL_STACK_SIZE * 2 ) */

#if ( ( configMAX_API_CALL_INTERRUPT_PRIORITY > portMAX_PRIORITY ) || ( configMAX_API_CALL_INTERRUPT_PRIORITY < 2 ) )
    #error configMAX_API_CALL_INTERRUPT_PRIORITY must be between 2 and 15
#endif

#if ( ( configSUPPORT_FPU == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 0 ) )
    #error configSUPPORT_DYNAMIC_ALLOCATION must be set to 1 to use this port with an FPU
#endif

/* A critical section is exited when the critical section nesting count reaches
 * this value. */
#define portNO_CRITICAL_NESTING          ( ( uint32_t ) 0 )

/* Tasks are not created with a floating point context, but can be given a
 * floating point context after they have been created.  A variable is stored as
 * part of the tasks context that holds portNO_FLOATING_POINT_CONTEXT if the task
 * does not have an FPU context, or any other value if the task does have an FPU
 * context. */
#define portNO_FLOATING_POINT_CONTEXT    ( ( StackType_t ) 0 )

/* Only the IF bit is set so tasks start with interrupts enabled. */
#define portINITIAL_EFLAGS               ( 0x200UL )

/* Error interrupts are at the highest priority vectors. */
#define portAPIC_LVT_ERROR_VECTOR        ( 0xfe )
#define portAPIC_SPURIOUS_INT_VECTOR     ( 0xff )

/* EFLAGS bits. */
#define portEFLAGS_IF                    ( 0x200UL )

/* FPU context size if FSAVE is used. */
#define portFPU_CONTEXT_SIZE_BYTES       108

/* The expected size of each entry in the IDT.  Used to check structure packing
 * is set correctly. */
#define portEXPECTED_IDT_ENTRY_SIZE      8

/* Default flags setting for entries in the IDT. */
#define portIDT_FLAGS                    ( 0x8E )

/* This is the lowest possible ISR vector available to application code. */
#define portAPIC_MIN_ALLOWABLE_VECTOR    ( 0x20 )

/* If configASSERT() is defined then the system stack is filled with this value
 * to allow for a crude stack overflow check. */
#define portSTACK_WORD                   ( 0xecececec )
/*-----------------------------------------------------------*/

/*
 * Starts the first task executing.
 */
extern void vPortStartFirstTask( void );

/*
 * Used to catch tasks that attempt to return from their implementing function.
 */
static void prvTaskExitError( void );

/*
 * Complete one descriptor in the IDT.
 */
static void prvSetInterruptGate( uint8_t ucNumber,
                                 ISR_Handler_t pxHandlerFunction,
                                 uint8_t ucFlags );

/*
 * The default handler installed in each IDT position.
 */
extern void vPortCentralInterruptWrapper( void );

/*
 * Handler for portYIELD().
 */
extern void vPortYieldCall( void );

/*
 * Configure the APIC to generate the RTOS tick.
 */
static void prvSetupTimerInterrupt( void );

/*
 * Tick interrupt handler.
 */
extern void vPortTimerHandler( void );

/*
 * Check an interrupt vector is not too high, too low, in use by FreeRTOS, or
 * already in use by the application.
 */
static BaseType_t prvCheckValidityOfVectorNumber( uint32_t ulVectorNumber );

/*-----------------------------------------------------------*/

/* A variable is used to keep track of the critical section nesting.  This
 * variable must be initialised to a non zero value to ensure interrupts don't
 * inadvertently become unmasked before the scheduler starts. It is set to zero
 * before the first task starts executing. */
volatile uint32_t ulCriticalNesting = 9999UL;

/* A structure used to map the various fields of an IDT entry into separate
 * structure members. */
struct IDTEntry
{
    uint16_t usISRLow;          /* Low 16 bits of handler address. */
    uint16_t usSegmentSelector; /* Flat model means this is not changed. */
    uint8_t ucZero;             /* Must be set to zero. */
    uint8_t ucFlags;            /* Flags for this entry. */
    uint16_t usISRHigh;         /* High 16 bits of handler address. */
}
__attribute__( ( packed ) );
typedef struct IDTEntry IDTEntry_t;


/* Use to pass the location of the IDT to the CPU. */
struct IDTPointer
{
    uint16_t usTableLimit;
    uint32_t ulTableBase; /* The address of the first entry in xInterruptDescriptorTable. */
}
__attribute__( ( __packed__ ) );
typedef struct IDTPointer IDTPointer_t;

/* The IDT itself. */
static __attribute__( ( aligned( 32 ) ) ) IDTEntry_t xInterruptDescriptorTable[ portNUM_VECTORS ];

#if ( configUSE_COMMON_INTERRUPT_ENTRY_POINT == 1 )

/* A table in which application defined interrupt handlers are stored.  These
 * are called by the central interrupt handler if a common interrupt entry
 * point it used. */
    static ISR_Handler_t xInterruptHandlerTable[ portNUM_VECTORS ] = { NULL };

#endif /* configUSE_COMMON_INTERRUPT_ENTRY_POINT */

#if ( configSUPPORT_FPU == 1 )

/* Saved as part of the task context.  If pucPortTaskFPUContextBuffer is NULL
 * then the task does not have an FPU context.  If pucPortTaskFPUContextBuffer is
 * not NULL then it points to a buffer into which the FPU context can be saved. */
    uint8_t * pucPortTaskFPUContextBuffer __attribute__( ( used ) ) = pdFALSE;

#endif /* configSUPPORT_FPU */

/* The stack used by interrupt handlers. */
static uint32_t ulSystemStack[ configISR_STACK_SIZE ] __attribute__( ( used ) ) = { 0 };

/* Don't use the very top of the system stack so the return address
 * appears as 0 if the debugger tries to unwind the stack. */
volatile uint32_t ulTopOfSystemStack __attribute__( ( used ) ) = ( uint32_t ) &( ulSystemStack[ configISR_STACK_SIZE - 5 ] );

/* If a yield is requested from an interrupt or from a critical section then
 * the yield is not performed immediately, and ulPortYieldPending is set to pdTRUE
 * instead to indicate the yield should be performed at the end of the interrupt
 * when the critical section is exited. */
volatile uint32_t ulPortYieldPending __attribute__( ( used ) ) = pdFALSE;

/* Counts the interrupt nesting depth.  Used to know when to switch to the
 * interrupt/system stack and when to save/restore a complete context. */
volatile uint32_t ulInterruptNesting __attribute__( ( used ) ) = 0;

/*-----------------------------------------------------------*/

/*
 * See header file for description.
 */
StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack,
                                     TaskFunction_t pxCode,
                                     void * pvParameters )
{
    uint32_t ulCodeSegment;

    /* Setup the initial stack as expected by the portFREERTOS_INTERRUPT_EXIT macro. */

    *pxTopOfStack = 0x00;
    pxTopOfStack--;
    *pxTopOfStack = 0x00;
    pxTopOfStack--;

    /* Parameters first. */
    *pxTopOfStack = ( StackType_t ) pvParameters;
    pxTopOfStack--;

    /* There is nothing to return to so assert if attempting to use the return
     * address. */
    *pxTopOfStack = ( StackType_t ) prvTaskExitError;
    pxTopOfStack--;

    /* iret used to start the task pops up to here. */
    *pxTopOfStack = portINITIAL_EFLAGS;
    pxTopOfStack--;

    /* CS */
    __asm volatile ( "movl %%cs, %0" : "=r" ( ulCodeSegment ) );
    *pxTopOfStack = ulCodeSegment;
    pxTopOfStack--;

    /* First instruction in the task. */
    *pxTopOfStack = ( StackType_t ) pxCode;
    pxTopOfStack--;

    /* General purpose registers as expected by a POPA instruction. */
    *pxTopOfStack = 0xEA;
    pxTopOfStack--;

    *pxTopOfStack = 0xEC;
    pxTopOfStack--;

    *pxTopOfStack = 0xED1; /* EDX */
    pxTopOfStack--;

    *pxTopOfStack = 0xEB1; /* EBX */
    pxTopOfStack--;

    /* Hole for ESP. */
    pxTopOfStack--;

    *pxTopOfStack = 0x00; /* EBP */
    pxTopOfStack--;

    *pxTopOfStack = 0xE5; /* ESI */
    pxTopOfStack--;

    *pxTopOfStack = 0xeeeeeeee; /* EDI */

    #if ( configSUPPORT_FPU == 1 )
        {
            pxTopOfStack--;

            /* Buffer for FPU context, which is initialised to NULL as tasks are not
             * created with an FPU context. */
            *pxTopOfStack = portNO_FLOATING_POINT_CONTEXT;
        }
    #endif /* configSUPPORT_FPU */

    return pxTopOfStack;
}
/*-----------------------------------------------------------*/

static void prvSetInterruptGate( uint8_t ucNumber,
                                 ISR_Handler_t pxHandlerFunction,
                                 uint8_t ucFlags )
{
    uint16_t usCodeSegment;
    uint32_t ulBase = ( uint32_t ) pxHandlerFunction;

    xInterruptDescriptorTable[ ucNumber ].usISRLow = ( uint16_t ) ( ulBase & USHRT_MAX );
    xInterruptDescriptorTable[ ucNumber ].usISRHigh = ( uint16_t ) ( ( ulBase >> 16UL ) & USHRT_MAX );

    /* When the flat model is used the CS will never change. */
    __asm volatile ( "mov %%cs, %0" : "=r" ( usCodeSegment ) );
    xInterruptDescriptorTable[ ucNumber ].usSegmentSelector = usCodeSegment;
    xInterruptDescriptorTable[ ucNumber ].ucZero = 0;
    xInterruptDescriptorTable[ ucNumber ].ucFlags = ucFlags;
}
/*-----------------------------------------------------------*/

void vPortSetupIDT( void )
{
    uint32_t ulNum;
    IDTPointer_t xIDT;

    #if ( configUSE_COMMON_INTERRUPT_ENTRY_POINT == 1 )
        {
            for( ulNum = 0; ulNum < portNUM_VECTORS; ulNum++ )
            {
                /* If a handler has not already been installed on this vector. */
                if( ( xInterruptDescriptorTable[ ulNum ].usISRLow == 0x00 ) && ( xInterruptDescriptorTable[ ulNum ].usISRHigh == 0x00 ) )
                {
                    prvSetInterruptGate( ( uint8_t ) ulNum, vPortCentralInterruptWrapper, portIDT_FLAGS );
                }
            }
        }
    #endif /* configUSE_COMMON_INTERRUPT_ENTRY_POINT */

    /* Set IDT address. */
    xIDT.ulTableBase = ( uint32_t ) xInterruptDescriptorTable;
    xIDT.usTableLimit = sizeof( xInterruptDescriptorTable ) - 1;

    /* Set IDT in CPU. */
    __asm volatile ( "lidt %0" ::"m" ( xIDT ) );
}
/*-----------------------------------------------------------*/

static void prvTaskExitError( void )
{
    /* A function that implements a task must not exit or attempt to return to
     * its caller as there is nothing to return to.  If a task wants to exit it
     * should instead call vTaskDelete( NULL ).
     *
     * Artificially force an assert() to be triggered if configASSERT() is
     * defined, then stop here so application writers can catch the error. */
    configASSERT( ulCriticalNesting == ~0UL );
    portDISABLE_INTERRUPTS();

    for( ; ; )
    {
    }
}
/*-----------------------------------------------------------*/

static void prvSetupTimerInterrupt( void )
{
    extern void vPortAPICErrorHandlerWrapper( void );
    extern void vPortAPICSpuriousHandler( void );

    /* Initialise LAPIC to a well known state. */
    portAPIC_LDR = 0xFFFFFFFF;
    portAPIC_LDR = ( ( portAPIC_LDR & 0x00FFFFFF ) | 0x00000001 );
    portAPIC_LVT_TIMER = portAPIC_DISABLE;
    portAPIC_LVT_PERF = portAPIC_NMI;
    portAPIC_LVT_LINT0 = portAPIC_DISABLE;
    portAPIC_LVT_LINT1 = portAPIC_DISABLE;
    portAPIC_TASK_PRIORITY = 0;

    /* Install APIC timer ISR vector. */
    prvSetInterruptGate( ( uint8_t ) portAPIC_TIMER_INT_VECTOR, vPortTimerHandler, portIDT_FLAGS );

    /* Install API error handler. */
    prvSetInterruptGate( ( uint8_t ) portAPIC_LVT_ERROR_VECTOR, vPortAPICErrorHandlerWrapper, portIDT_FLAGS );

    /* Install Yield handler. */
    prvSetInterruptGate( ( uint8_t ) portAPIC_YIELD_INT_VECTOR, vPortYieldCall, portIDT_FLAGS );

    /* Install spurious interrupt vector. */
    prvSetInterruptGate( ( uint8_t ) portAPIC_SPURIOUS_INT_VECTOR, vPortAPICSpuriousHandler, portIDT_FLAGS );

    /* Enable the APIC, mapping the spurious interrupt at the same time. */
    portAPIC_SPURIOUS_INT = portAPIC_SPURIOUS_INT_VECTOR | portAPIC_ENABLE_BIT;

    /* Set timer error vector. */
    portAPIC_LVT_ERROR = portAPIC_LVT_ERROR_VECTOR;

    /* Set the interrupt frequency. */
    portAPIC_TMRDIV = portAPIC_DIV_16;
    portAPIC_TIMER_INITIAL_COUNT = ( ( configCPU_CLOCK_HZ >> 4UL ) / configTICK_RATE_HZ ) - 1UL;
}
/*-----------------------------------------------------------*/

BaseType_t xPortStartScheduler( void )
{
    BaseType_t xWord;

    /* Some versions of GCC require the -mno-ms-bitfields command line option
     * for packing to work. */
    configASSERT( sizeof( struct IDTEntry ) == portEXPECTED_IDT_ENTRY_SIZE );

    /* Fill part of the system stack with a known value to help detect stack
     * overflow.  A few zeros are left so GDB doesn't get confused unwinding
     * the stack. */
    for( xWord = 0; xWord < configISR_STACK_SIZE - 20; xWord++ )
    {
        ulSystemStack[ xWord ] = portSTACK_WORD;
    }

    /* Initialise Interrupt Descriptor Table (IDT). */
    vPortSetupIDT();

    /* Initialise LAPIC and install system handlers. */
    prvSetupTimerInterrupt();

    /* Make sure the stack used by interrupts is aligned. */
    ulTopOfSystemStack &= ~portBYTE_ALIGNMENT_MASK;

    ulCriticalNesting = 0;

    /* Enable LAPIC Counter.*/
    portAPIC_LVT_TIMER = portAPIC_TIMER_PERIODIC | portAPIC_TIMER_INT_VECTOR;

    /* Sometimes needed. */
    portAPIC_TMRDIV = portAPIC_DIV_16;

    /* Should not return from the following function as the scheduler will then
     * be executing the tasks. */
    vPortStartFirstTask();

    return 0;
}
/*-----------------------------------------------------------*/

void vPortEndScheduler( void )
{
    /* Not implemented in ports where there is nothing to return to.
     * Artificially force an assert. */
    configASSERT( ulCriticalNesting == 1000UL );
}
/*-----------------------------------------------------------*/

void vPortEnterCritical( void )
{
    if( ulCriticalNesting == 0 )
    {
        #if ( configMAX_API_CALL_INTERRUPT_PRIORITY == portMAX_PRIORITY )
            {
                __asm volatile ( "cli" );
            }
        #else
            {
                portAPIC_TASK_PRIORITY = portMAX_API_CALL_PRIORITY;
                configASSERT( portAPIC_TASK_PRIORITY == portMAX_API_CALL_PRIORITY );
            }
        #endif
    }

    /* Now interrupts are disabled ulCriticalNesting can be accessed
     * directly.  Increment ulCriticalNesting to keep a count of how many times
     * portENTER_CRITICAL() has been called. */
    ulCriticalNesting++;
}
/*-----------------------------------------------------------*/

void vPortExitCritical( void )
{
    if( ulCriticalNesting > portNO_CRITICAL_NESTING )
    {
        /* Decrement the nesting count as the critical section is being
         * exited. */
        ulCriticalNesting--;

        /* If the nesting level has reached zero then all interrupt
         * priorities must be re-enabled. */
        if( ulCriticalNesting == portNO_CRITICAL_NESTING )
        {
            /* Critical nesting has reached zero so all interrupt priorities
             * should be unmasked. */
            #if ( configMAX_API_CALL_INTERRUPT_PRIORITY == portMAX_PRIORITY )
                {
                    __asm volatile ( "sti" );
                }
            #else
                {
                    portAPIC_TASK_PRIORITY = 0;
                }
            #endif

            /* If a yield was pended from within the critical section then
             * perform the yield now. */
            if( ulPortYieldPending != pdFALSE )
            {
                ulPortYieldPending = pdFALSE;
                __asm volatile ( portYIELD_INTERRUPT );
            }
        }
    }
}
/*-----------------------------------------------------------*/

uint32_t ulPortSetInterruptMask( void )
{
    volatile uint32_t ulOriginalMask;

    /* Set mask to max syscall priority. */
    #if ( configMAX_API_CALL_INTERRUPT_PRIORITY == portMAX_PRIORITY )
        {
            /* Return whether interrupts were already enabled or not.  Pop adjusts
             * the stack first. */
            __asm volatile ( "pushf		\t\n"
                             "pop %0		\t\n"
                             "cli			"
                             : "=rm" ( ulOriginalMask )::"memory" );

            ulOriginalMask &= portEFLAGS_IF;
        }
    #else
        {
            /* Return original mask. */
            ulOriginalMask = portAPIC_TASK_PRIORITY;
            portAPIC_TASK_PRIORITY = portMAX_API_CALL_PRIORITY;
            configASSERT( portAPIC_TASK_PRIORITY == portMAX_API_CALL_PRIORITY );
        }
    #endif /* if ( configMAX_API_CALL_INTERRUPT_PRIORITY == portMAX_PRIORITY ) */

    return ulOriginalMask;
}
/*-----------------------------------------------------------*/

void vPortClearInterruptMask( uint32_t ulNewMaskValue )
{
    #if ( configMAX_API_CALL_INTERRUPT_PRIORITY == portMAX_PRIORITY )
        {
            if( ulNewMaskValue != pdFALSE )
            {
                __asm volatile ( "sti" );
            }
        }
    #else
        {
            portAPIC_TASK_PRIORITY = ulNewMaskValue;
            configASSERT( portAPIC_TASK_PRIORITY == ulNewMaskValue );
        }
    #endif /* if ( configMAX_API_CALL_INTERRUPT_PRIORITY == portMAX_PRIORITY ) */
}
/*-----------------------------------------------------------*/

#if ( configSUPPORT_FPU == 1 )

    void vPortTaskUsesFPU( void )
    {
        /* A task is registering the fact that it needs an FPU context.  Allocate a
         * buffer into which the context can be saved. */
        pucPortTaskFPUContextBuffer = ( uint8_t * ) pvPortMalloc( portFPU_CONTEXT_SIZE_BYTES );
        configASSERT( pucPortTaskFPUContextBuffer );

        /* Initialise the floating point registers. */
        __asm volatile ( "fninit" );
    }

#endif /* configSUPPORT_FPU */
/*-----------------------------------------------------------*/

void vPortAPICErrorHandler( void )
{
/* Variable to hold the APIC error status for viewing in the debugger. */
    volatile uint32_t ulErrorStatus = 0;

    portAPIC_ERROR_STATUS = 0;
    ulErrorStatus = portAPIC_ERROR_STATUS;
    ( void ) ulErrorStatus;

    /* Force an assert. */
    configASSERT( ulCriticalNesting == ~0UL );
}
/*-----------------------------------------------------------*/

#if ( configUSE_COMMON_INTERRUPT_ENTRY_POINT == 1 )

    void vPortCentralInterruptHandler( uint32_t ulVector )
    {
        if( ulVector < portNUM_VECTORS )
        {
            if( xInterruptHandlerTable[ ulVector ] != NULL )
            {
                ( xInterruptHandlerTable[ ulVector ] )();
            }
        }

        /* Check for a system stack overflow. */
        configASSERT( ulSystemStack[ 10 ] == portSTACK_WORD );
        configASSERT( ulSystemStack[ 12 ] == portSTACK_WORD );
        configASSERT( ulSystemStack[ 14 ] == portSTACK_WORD );
    }

#endif /* configUSE_COMMON_INTERRUPT_ENTRY_POINT */
/*-----------------------------------------------------------*/

#if ( configUSE_COMMON_INTERRUPT_ENTRY_POINT == 1 )

    BaseType_t xPortRegisterCInterruptHandler( ISR_Handler_t pxHandler,
                                               uint32_t ulVectorNumber )
    {
        BaseType_t xReturn;

        xReturn = prvCheckValidityOfVectorNumber( ulVectorNumber );

        if( xReturn != pdFAIL )
        {
            /* Save the handler passed in by the application in the vector number
             * passed in.  The addresses are then called from the central interrupt
             * handler. */
            xInterruptHandlerTable[ ulVectorNumber ] = pxHandler;
        }

        return xReturn;
    }

#endif /* configUSE_COMMON_INTERRUPT_ENTRY_POINT */
/*-----------------------------------------------------------*/

BaseType_t xPortInstallInterruptHandler( ISR_Handler_t pxHandler,
                                         uint32_t ulVectorNumber )
{
    BaseType_t xReturn;

    xReturn = prvCheckValidityOfVectorNumber( ulVectorNumber );

    if( xReturn != pdFAIL )
    {
        taskENTER_CRITICAL();
        {
            /* Update the IDT to include the application defined handler. */
            prvSetInterruptGate( ( uint8_t ) ulVectorNumber, ( ISR_Handler_t ) pxHandler, portIDT_FLAGS );
        }
        taskEXIT_CRITICAL();
    }

    return xReturn;
}
/*-----------------------------------------------------------*/

static BaseType_t prvCheckValidityOfVectorNumber( uint32_t ulVectorNumber )
{
    BaseType_t xReturn;

    /* Check validity of vector number. */
    if( ulVectorNumber >= portNUM_VECTORS )
    {
        /* Too high. */
        xReturn = pdFAIL;
    }
    else if( ulVectorNumber < portAPIC_MIN_ALLOWABLE_VECTOR )
    {
        /* Too low. */
        xReturn = pdFAIL;
    }
    else if( ulVectorNumber == portAPIC_TIMER_INT_VECTOR )
    {
        /* In use by FreeRTOS. */
        xReturn = pdFAIL;
    }
    else if( ulVectorNumber == portAPIC_YIELD_INT_VECTOR )
    {
        /* In use by FreeRTOS. */
        xReturn = pdFAIL;
    }
    else if( ulVectorNumber == portAPIC_LVT_ERROR_VECTOR )
    {
        /* In use by FreeRTOS. */
        xReturn = pdFAIL;
    }
    else if( ulVectorNumber == portAPIC_SPURIOUS_INT_VECTOR )
    {
        /* In use by FreeRTOS. */
        xReturn = pdFAIL;
    }
    else if( xInterruptHandlerTable[ ulVectorNumber ] != NULL )
    {
        /* Already in use by the application. */
        xReturn = pdFAIL;
    }
    else
    {
        xReturn = pdPASS;
    }

    return xReturn;
}
/*-----------------------------------------------------------*/

void vGenerateYieldInterrupt( void )
{
    __asm volatile ( portYIELD_INTERRUPT );
}