/* FreeRTOS V6.0.5 - Copyright (C) 2010 Real Time Engineers Ltd. *************************************************************************** * * * If you are: * * * * + New to FreeRTOS, * * + Wanting to learn FreeRTOS or multitasking in general quickly * * + Looking for basic training, * * + Wanting to improve your FreeRTOS skills and productivity * * * * then take a look at the FreeRTOS eBook * * * * "Using the FreeRTOS Real Time Kernel - a Practical Guide" * * http://www.FreeRTOS.org/Documentation * * * * A pdf reference manual is also available. Both are usually delivered * * to your inbox within 20 minutes to two hours when purchased between 8am * * and 8pm GMT (although please allow up to 24 hours in case of * * exceptional circumstances). Thank you for your support! * * * *************************************************************************** This file is part of the FreeRTOS distribution. FreeRTOS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License (version 2) as published by the Free Software Foundation AND MODIFIED BY the FreeRTOS exception. ***NOTE*** The exception to the GPL is included to allow you to distribute a combined work that includes FreeRTOS without being obliged to provide the source code for proprietary components outside of the FreeRTOS kernel. FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License and the FreeRTOS license exception along with FreeRTOS; if not it can be viewed here: http://www.freertos.org/a00114.html and also obtained by writing to Richard Barry, contact details for whom are available on the FreeRTOS WEB site. 1 tab == 4 spaces! http://www.FreeRTOS.org - Documentation, latest information, license and contact details. http://www.SafeRTOS.com - A version that is certified for use in safety critical systems. http://www.OpenRTOS.com - Commercial support, development, porting, licensing and training services. */ /* * NOTE 1: The CPU must be in Supervisor mode when the scheduler is started. * The PowerON_Reset_PC() supplied in resetprg.c with this demo has * Change_PSW_PM_to_UserMode() commented out to ensure this is the case. */ /* Hardware specific includes. */ #include "iodefine.h" #include "rskrx62ndef.h" /* Kernel includes. */ #include "FreeRTOS.h" #include "task.h" /* * vApplicationMallocFailedHook() will only be called if * configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook * function that will execute if a call to pvPortMalloc() fails. * pvPortMalloc() is called internally by the kernel whenever a task, queue or * semaphore is created. It is also called by various parts of the demo * application. */ void vApplicationMallocFailedHook( void ); /* * vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set to 1 * in FreeRTOSConfig.h. It is a hook function that is called on each iteration * of the idle task. It is essential that code added to this hook function * never attempts to block in any way (for example, call xQueueReceive() with * a block time specified). If the application makes use of the vTaskDelete() * API function (as this demo application does) then it is also important that * vApplicationIdleHook() is permitted to return to its calling function because * it is the responsibility of the idle task to clean up memory allocated by the * kernel to any task that has since been deleted. */ void vApplicationIdleHook( void ); /* * vApplicationStackOverflowHook() will only be called if * configCHECK_FOR_STACK_OVERFLOW is set to a non-zero value. The handle and * name of the offending task should be passed in the function parameters, but * it is possible that the stack overflow will have corrupted these - in which * case pxCurrentTCB can be inspected to find the same information. */ void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed char *pcTaskName ); /* * The reg test tasks as described at the top of this file. */ void vRegTest1Task( void *pvParameters ); void vRegTest2Task( void *pvParameters ); /*-----------------------------------------------------------*/ void main(void) { extern void HardwareSetup( void ); /* Renesas provided CPU configuration routine. The clocks are configured in here. */ HardwareSetup(); /* Turn all LEDs off. */ vParTestInitialise(); /* Start the reg test tasks which test the context switching mechanism. */ xTaskCreate( vRegTest1Task, "RegTst1", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL ); xTaskCreate( vRegTest2Task, "RegTst2", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL ); /* Start the tasks running. */ vTaskStartScheduler(); /* If all is well we will never reach here as the scheduler will now be running. If we do reach here then it is likely that there was insufficient heap available for the idle task to be created. */ for( ;; ); } /*-----------------------------------------------------------*/ void vApplicationSetupTimerInterrupt( void ) { /* Enable compare match timer 0. */ MSTP( CMT0 ) = 0; /* Interrupt on compare match. */ CMT0.CMCR.BIT.CMIE = 1; /* Set the compare match value. */ CMT0.CMCOR = ( unsigned short ) ( ( ( configCPU_CLOCK_HZ / configTICK_RATE_HZ ) -1 ) / 8 ); /* Divide the PCLK by 8. */ CMT0.CMCR.BIT.CKS = 0; /* Enable the interrupt... */ _IEN(_CMT0_CMI0) = 1; /* ...and set its priority to the application defined kernel priority. */ _IPR(_CMT0_CMI0) = configKERNEL_INTERRUPT_PRIORITY; /* Start the timer. */ CMT.CMSTR0.BIT.STR0 = 1; } /*-----------------------------------------------------------*/ /* This function is explained by the comments above its prototype at the top of this file. */ void vApplicationMallocFailedHook( void ) { for( ;; ); } /*-----------------------------------------------------------*/ /* This function is explained by the comments above its prototype at the top of this file. */ void vApplicationStackOverflowHook( xTaskHandle *pxTask, signed char *pcTaskName ) { for( ;; ); } /*-----------------------------------------------------------*/ /* This function is explained by the comments above its prototype at the top of this file. */ void vApplicationIdleHook( void ) { taskENTER_CRITICAL(); taskEXIT_CRITICAL(); } /*-----------------------------------------------------------*/ void vRegTest1Task( void *pvParameters ) { volatile unsigned long ul = 0; for( ;; ) { ul += 2; ul -= 1; } } /*-----------------------------------------------------------*/ void vRegTest2Task( void *pvParameters ) { volatile unsigned long ul = 0; for( ;; ) { ul += 4; ul -= 2; } }