It was possible for a third party that had already independently gained
the ability to execute injected code to achieve further privilege
escalation by branching directly inside a FreeRTOS MPU API wrapper
function with a manually crafted stack frame. This commit removes the
local stack variable `xRunningPrivileged` so that a manually crafted
stack frame cannot be used for privilege escalation by branching
directly inside a FreeRTOS MPU API wrapper.
We thank Certibit Consulting, LLC, Huazhong University of Science and
Technology and the SecLab team at Northeastern University for reporting
this issue.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
ARMv7-M allows overlapping MPU regions. When 2 MPU regions overlap, the
MPU configuration of the higher numbered MPU region is applied. For
example, if a memory area is covered by 2 MPU regions 0 and 1, the
memory permissions for MPU region 1 are applied.
We use 5 MPU regions for kernel code and kernel data protections and
leave the remaining for the application writer. We were using lowest
numbered MPU regions (0-4) for kernel protections and leaving the
remaining for the application writer. The application writer could
configure those higher numbered MPU regions to override kernel
protections.
This commit changes the code to use highest numbered MPU regions for
kernel protections and leave the remaining for the application writer.
This ensures that the application writer cannot override kernel
protections.
We thank the SecLab team at Northeastern University for reporting this
issue.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
This commit introduces a new config
configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS which enables developers to
prevent critical sections from unprivileged tasks. It defaults to 1 for
backward compatibility. Application should set it to 0 to disable
critical sections from unprivileged tasks.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
* Style: make freertos.org = FreeRTOS.org also add https
* Style: Fix freertos into FreeRTOS
* Style: Fix freertos into FreeRTOS
Co-authored-by: Alfred Gedeon <gedeonag@amazon.com>
* Style: Change FreeRTOS websites in comments
* Style: Change freertos to FreeRTOS in comments
* Style: Remove broken link
Co-authored-by: Alfred Gedeon <gedeonag@amazon.com>
The reason for the change is that the register is called System Handler
Priority Register 3 (SHPR3).
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
When Link Time Optimization (LTO) is enabled, some of the LDR
instructions result in out of range access. The reason is that the
default generated literal pool is too far and not within the permissible
range of 4K.
This commit adds LTORG assembly instructions at required places to
ensure that access to literals remain in the permissible range of 4K.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Enabling Link Time Optimization (LTO) causes some of the functions used
in assembly to be incorrectly stripped off, resulting in linker error.
To avoid this, these functions are marked with portDONT_DISCARD macro,
definition of which is port specific. This commit adds the definition
of portDONT_DISCARD for ARMv7-M ports.
Signed-off-by: Gaurav Aggarwal
Problem Description
-------------------
The current flash organization in ARMv7-M MPU ports looks as follows:
__FLASH_segment_start__ ------->+-----------+<----- __FLASH_segment_start__
| Vector |
| Table |
| + |
| Kernel |
| Code |
+-----------+<----- __privileged_functions_end__
| |
| |
| |
| Other |
| Code |
| |
| |
| |
__FLASH_segment_end__ ------>+-----------+
The FreeRTOS kernel sets up the following MPU regions:
* Unprivileged Code - __FLASH_segment_start__ to __FLASH_segment_end__.
* Privileged Code - __FLASH_segment_start__ to __privileged_functions_end__.
The above setup assumes that the FreeRTOS kernel code
(i.e. privileged_functions) is placed at the beginning of the flash and,
therefore, uses __FLASH_segment_start__ as the starting location of the
privileged code. This prevents a user from placing the FreeRTOS kernel
code outside of flash (say to an external RAM) and still have vector
table at the beginning of flash (which is many times a hardware
requirement).
Solution
--------
This commit addresses the above limitation by using a new variable
__privileged_functions_start__ as the starting location of the
privileged code. This enables users to place the FreeRTOS kernel code
wherever they choose.
The FreeRTOS kernel now sets up the following MPU regions:
* Unprivileged Code - __FLASH_segment_start__ to __FLASH_segment_end__.
* Privileged Code - __privileged_functions_start__ to __privileged_functions_end__.
As a result, a user can now place the kernel code to an external RAM. A
possible organization is:
Flash External RAM
+------------+ +-----------+<------ __privileged_functions_start__
| Vector | | |
| Table | | |
| | | |
__FLASH_segment_start__ ----->+------------+ | Kernel |
| | | Code |
| | | |
| | | |
| | | |
| Other | | |
| Code | +-----------+<------ __privileged_functions_end__
| |
| |
| |
__FLASH_segment_end__ ----->+------------+
Note that the above configuration places the vector table in an unmapped
region. This is okay because we enable the background region, and so the
vector table will still be accessible to the privileged code and not
accessible to the unprivileged code (vector table is only needed by the
privileged code).
Backward Compatibility
----------------------
The FreeRTOS kernel code now uses a new variable, namely
__privileged_functions_start__, which needs to be exported from linker
script to indicate the starting location of the privileged code. All of
our existing demos already export this variable and therefore, they will
continue to work.
If a user has created a project which does not export this variable,
they will get a linker error for unresolved symbol
__privileged_functions_start__. They need to export a variable
__privileged_functions_start__ with the value equal to
__FLASH_segment_start__.
Issue
-----
https://sourceforge.net/p/freertos/feature-requests/56/
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>