* Set SysTick CLKSOURCE bit before enabling SysTick
* Use portNVIC_SYSTICK_CLK_BIT_CONFIG
The workaround now uses portNVIC_SYSTICK_CLK_BIT_CONFIG instead of
portNVIC_SYSTICK_CLK_BIT, which saves us from having to explain in the
comments why it's OK to temporarily set the CLKSOURCE bit even if the
user's FreeRTOS configuration clears the CLKSOURCE bit.
Using portNVIC_SYSTICK_CLK_BIT_CONFIG here still correctly prevents the
firmware from triggering the QEMU bug.
Memory Protection Unit (MPU) Enhancements
This commit introduces a new MPU wrapper that places additional
restrictions on unprivileged tasks. The following is the list of changes
introduced with the new MPU wrapper:
1. Opaque and indirectly verifiable integers for kernel object handles:
All the kernel object handles (for example, queue handles) are now
opaque integers. Previously object handles were raw pointers.
2. Saving the task context in Task Control Block (TCB): When a task is
swapped out by the scheduler, the task's context is now saved in its
TCB. Previously the task's context was saved on its stack.
3. Execute system calls on a separate privileged only stack: FreeRTOS
system calls, which execute with elevated privilege, now use a
separate privileged only stack. Previously system calls used the
calling task's stack. The application writer can control the size of
the system call stack using new configSYSTEM_CALL_STACK_SIZE config
macro.
4. Memory bounds checks: FreeRTOS system calls which accept a pointer
and de-reference it, now verify that the calling task has required
permissions to access the memory location referenced by the pointer.
5. System call restrictions: The following system calls are no longer
available to unprivileged tasks:
- vQueueDelete
- xQueueCreateMutex
- xQueueCreateMutexStatic
- xQueueCreateCountingSemaphore
- xQueueCreateCountingSemaphoreStatic
- xQueueGenericCreate
- xQueueGenericCreateStatic
- xQueueCreateSet
- xQueueRemoveFromSet
- xQueueGenericReset
- xTaskCreate
- xTaskCreateStatic
- vTaskDelete
- vTaskPrioritySet
- vTaskSuspendAll
- xTaskResumeAll
- xTaskGetHandle
- xTaskCallApplicationTaskHook
- vTaskList
- vTaskGetRunTimeStats
- xTaskCatchUpTicks
- xEventGroupCreate
- xEventGroupCreateStatic
- vEventGroupDelete
- xStreamBufferGenericCreate
- xStreamBufferGenericCreateStatic
- vStreamBufferDelete
- xStreamBufferReset
Also, an unprivileged task can no longer use vTaskSuspend to suspend
any task other than itself.
We thank the following people for their inputs in these enhancements:
- David Reiss of Meta Platforms, Inc.
- Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling
of School of Computer Science and Engineering, Southeast University,
China.
- Xinwen Fu of Department of Computer Science, University of
Massachusetts Lowell, USA.
- Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado
Boulder, USA.
* Remove __NVIC_PRIO_BITS and configPRIO_BITS check in CM3, CM4 and ARMv8.
* Add hardware not implemented bits check. These bits should be zero.
---------
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
* Armv8-M: Formatting changes
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
* Armv8-M: Add support for interrupt priority check
FreeRTOS provides `FromISR` system calls which can be called directly
from interrupt service routines. It is crucial that the priority of
these ISRs is set to same or lower value (numerically higher) than that
of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer
to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html.
Add a check to trigger an assert when an ISR with priority higher
(numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls
`FromISR` system calls if `configASSERT` macro is defined.
In addition, add a config option
`configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt
priority check while running on QEMU. Based on the discussion
https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt
priority bits in QEMU do not match the real hardware. Therefore the
assert that checks the number of implemented bits and __NVIC_PRIO_BITS
will always fail. The config option
`configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the
`FreeRTOSConfig.h` for QEMU targets.
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
* Use SHPR2 for calculating interrupt priority bits
This removes the dependency on the secure software to mark the interrupt
as non-secure.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
---------
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
* Cortex-M35P: Add Cortex-M35P port
The Cortex-M35P support added to kernel. The port hasn't been
validated yet with TF-M. Hence TF-M support is not included in this
port.
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
* Add portNORETURN to the newly added portmacro.h
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
---------
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: kar-rahul-aws <118818625+kar-rahul-aws@users.noreply.github.com>
* Adding in ability to support a library for freertos_config and a custom freertos_kernel_port (#558)
* Using single name definition for libraries everywhere. (#558)
* Supporting backwards compatibility with FREERTOS_CONFIG_FILE_DIRECTORY (#571)
* Removing compiler warnings for GNU and Clang. (#571)
* Added in documentation on how to consume from a main project. Added default PORT selection for native POSIX and MINGW platforms.
* Only adding freertos_config if it exists. Removing auto generation of it from a FREERTOS_CONFIG_FILE_DIRECTORY.
* Fixing clang and gnu compiler warnings.
* Adding in project information and how to compile for GNU/clang
* Fixing compiler issue with unused variable - no need to declare variable.
* Adding in compile warnings for linux builds that kernel is okay with using.
* Fixing more extra-semi-stmt clang warnings.
* Moving definition of hooks into header files if features are enabled.
* Fixing formatting with uncrustify.
* Fixing merge conflicts with main merge.
* Fixing compiler errors due to merge issues and formatting.
* Fixing Line feeds.
* Adding 'portNORETURN' into portmacros.h. Other Updates based on PR request
* Further clean-up of clang and clang-tidy issues.
* Removing compiler specific pragmas from common c files.
* Fixing missing lexicon entry and uncrustify formatting changes.
* Resolving merge issue multiple defnitions of proto for prvIdleTask
* Fixing formatting issues that are not covered by uncrustify. Use clang-tidy instead if you want this level of control.
* More uncrustify formatting issues.
* Fixing extra bracket in #if statement.
---------
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
* Fix tickless idle when stopping systick on zero...
...and don't stop SysTick at all in the eAbortSleep case.
Prior to this commit, if vPortSuppressTicksAndSleep() happens to stop
the SysTick on zero, then after tickless idle ends, xTickCount advances
one full tick more than the time that actually elapsed as measured by
the SysTick. See "bug 1" in this forum post:
https://forums.freertos.org/t/ultasknotifytake-timeout-accuracy/9629/40
SysTick
-------
The SysTick is the hardware timer that provides the OS tick interrupt
in the official ports for Cortex M. SysTick starts counting down from
the value stored in its reload register. When SysTick reaches zero, it
requests an interrupt. On the next SysTick clock cycle, it loads the
counter again from the reload register. To get periodic interrupts
every N SysTick clock cycles, the reload register must be N - 1.
Bug Example
-----------
- Idle task calls vPortSuppressTicksAndSleep(xExpectedIdleTime = 2).
[Doesn't have to be "2" -- could be any number.]
- vPortSuppressTicksAndSleep() stops SysTick, and the current-count
register happens to stop on zero.
- SysTick ISR executes, setting xPendedTicks = 1
- vPortSuppressTicksAndSleep() masks interrupts and calls
eTaskConfirmSleepModeStatus() which confirms the sleep operation. ***
- vPortSuppressTicksAndSleep() configures SysTick for 1 full tick
(xExpectedIdleTime - 1) plus the current-count register (which is 0)
- One tick period elapses in sleep.
- SysTick wakes CPU, ISR executes and increments xPendedTicks to 2.
- vPortSuppressTicksAndSleep() calls vTaskStepTick(1), then returns.
- Idle task resumes scheduler, which increments xTickCount twice (for
xPendedTicks = 2)
In the end, two ticks elapsed as measured by SysTick, but the code
increments xTickCount three times. The root cause is that the code
assumes the SysTick current-count register always contains the number of
SysTick counts remaining in the current tick period. However, when the
current-count register is zero, there are ulTimerCountsForOneTick
counts remaining, not zero. This error is not the kind of time slippage
normally associated with tickless idle.
*** Note that a recent commit https://github.com/FreeRTOS/FreeRTOS-Kernel/commit/e1b98f0
results in eAbortSleep in this case, due to xPendedTicks != 0. That
commit does mostly resolve this bug without specifically mentioning
it, and without this commit. But that resolution allows the code in
port.c not to directly address the special case of stopping SysTick on
zero in any code or comments. That commit also generates additional
instances of eAbortSleep, and a second purpose of this commit is to
optimize how vPortSuppressTicksAndSleep() behaves for eAbortSleep, as
noted below.
This commit also includes an optimization to avoid stopping the SysTick
when eTaskConfirmSleepModeStatus() returns eAbortSleep. This
optimization belongs with this fix because the method of handling the
SysTick being stopped on zero changes with this optimization.
* Fix imminent tick rescheduled after tickless idle
Prior to this commit, if something other than systick wakes the CPU from
tickless idle, vPortSuppressTicksAndSleep() might cause xTickCount to
increment once too many times. See "bug 2" in this forum post:
https://forums.freertos.org/t/ultasknotifytake-timeout-accuracy/9629/40
SysTick
-------
The SysTick is the hardware timer that provides the OS tick interrupt
in the official ports for Cortex M. SysTick starts counting down from
the value stored in its reload register. When SysTick reaches zero, it
requests an interrupt. On the next SysTick clock cycle, it loads the
counter again from the reload register. To get periodic interrupts
every N SysTick clock cycles, the reload register must be N - 1.
Bug Example
-----------
- CPU is sleeping in vPortSuppressTicksAndSleep()
- Something other than the SysTick wakes the CPU.
- vPortSuppressTicksAndSleep() calculates the number of SysTick counts
until the next tick. The bug occurs only if this number is small.
- vPortSuppressTicksAndSleep() puts this small number into the SysTick
reload register, and starts SysTick.
- vPortSuppressTicksAndSleep() calls vTaskStepTick()
- While vTaskStepTick() executes, the SysTick expires. The ISR pends
because interrupts are masked, and SysTick starts a 2nd period still
based on the small number of counts in its reload register. This 2nd
period is undesirable and is likely to cause the error noted below.
- vPortSuppressTicksAndSleep() puts the normal tick duration into the
SysTick's reload register.
- vPortSuppressTicksAndSleep() unmasks interrupts before the SysTick
starts a new period based on the new value in the reload register.
[This is a race condition that can go either way, but for the bug
to occur, the race must play out this way.]
- The pending SysTick ISR executes and increments xPendedTicks.
- The SysTick expires again, finishing the second very small period, and
starts a new period this time based on the full tick duration.
- The SysTick ISR increments xPendedTicks (or xTickCount) even though
only a tiny fraction of a tick period has elapsed since the previous
tick.
The bug occurs when *two* consecutive small periods of the SysTick are
both counted as ticks. The root cause is a race caused by the small
SysTick period. If vPortSuppressTicksAndSleep() unmasks interrupts
*after* the small period expires but *before* the SysTick starts a
period based on the full tick period, then two small periods are
counted as ticks when only one should be counted.
The end result is xTickCount advancing nearly one full tick more than
time actually elapsed as measured by the SysTick. This is not the kind
of time slippage normally associated with tickless idle.
After this commit the code starts the SysTick and then immediately
modifies the reload register to ensure the very short cycle (if any) is
conducted only once. This strategy requires special consideration for
the build option that configures SysTick to use a divided clock. To
avoid waiting around for the SysTick to load value from the reload
register, the new code temporarily configures the SysTick to use the
undivided clock. The resulting timing error is typical for tickless
idle. The error (commonly known as drift or slippage in kernel time)
caused by this strategy is equivalent to one or two counts in
ulStoppedTimerCompensation.
This commit also updates comments and #define symbols related to the
SysTick clock option. The SysTick can optionally be clocked by a
divided version of the CPU clock (commonly divide-by-8). The new code
in this commit adjusts these comments and symbols to make them clearer
and more useful in configurations that use the divided clock. The fix
made in this commit requires the use of these symbols, as noted in the
code comments.
* Fix tickless idle with alternate systick clocking
Prior to this commit, in configurations using the alternate SysTick
clocking, vPortSuppressTicksAndSleep() might cause xTickCount to jump
ahead as much as the entire expected idle time or fall behind as much
as one full tick compared to time as measured by the SysTick.
SysTick
-------
The SysTick is the hardware timer that provides the OS tick interrupt
in the official ports for Cortex M. SysTick starts counting down from
the value stored in its reload register. When SysTick reaches zero, it
requests an interrupt. On the next SysTick clock cycle, it loads the
counter again from the reload register. The SysTick has a configuration
option to be clocked by an alternate clock besides the core clock.
This alternate clock is MCU dependent.
Scenarios Fixed
---------------
The new code in this commit handles the following scenarios that were
not handled correctly prior to this commit.
1. Before the sleep, vPortSuppressTicksAndSleep() stops the SysTick on
zero, long after SysTick reached zero. Prior to this commit, this
scenario caused xTickCount to jump ahead one full tick for the same
reason documented here: 0c7b04bd3a
2. After the sleep, vPortSuppressTicksAndSleep() stops the SysTick
before it loads the counter from the reload register. Prior to this
commit, this scenario caused xTickCount to jump ahead by the entire
expected idle time (xExpectedIdleTime) because the current-count
register is zero before it loads from the reload register.
3. Prior to return, vPortSuppressTicksAndSleep() attempts to start a
short SysTick period when the current SysTick clock cycle has a lot of
time remaining. Prior to this commit, this scenario could cause
xTickCount to fall behind by as much as nearly one full tick because the
short SysTick cycle never started.
Note that #3 is partially fixed by 967acc9b20
even though that commit addresses a different issue. So this commit
completes the partial fix.
* Improve comments and name of preprocessor symbol
Add a note in the code comments that SysTick requests an interrupt when
decrementing from 1 to 0, so that's why stopping SysTick on zero is a
special case. Readers might unknowingly assume that SysTick requests
an interrupt when wrapping from 0 back to the load-register value.
Reconsider new "_SETTING" suffix since "_CONFIG" suffix seems more
descriptive. The code relies on *both* of these preprocessor symbols:
portNVIC_SYSTICK_CLK_BIT
portNVIC_SYSTICK_CLK_BIT_CONFIG **new**
A meaningful suffix is really helpful to distinguish the two symbols.
* Revert introduction of 2nd name for NVIC register
When I added portNVIC_ICSR_REG I didn't realize there was already a
portNVIC_INT_CTRL_REG, which identifies the same register. Not good
to have both. Note that portNVIC_INT_CTRL_REG is defined in portmacro.h
and is already used in this file (port.c).
* Replicate to other Cortex M ports
Also set a new fiddle factor based on tests with a CM4F. I used gcc,
optimizing at -O1. Users can fine-tune as needed.
Also add configSYSTICK_CLOCK_HZ to the CM0 ports to be just like the
other Cortex M ports. This change allowed uniformity in the default
tickless implementations across all Cortex M ports. And CM0 is likely
to benefit from configSYSTICK_CLOCK_HZ, especially considering new CM0
devices with very fast CPU clock speeds.
* Revert changes to IAR-CM0-portmacro.h
portNVIC_INT_CTRL_REG was already defined in port.c. No need to define
it in portmacro.h.
* Handle edge cases with slow SysTick clock
Co-authored-by: Cobus van Eeden <35851496+cobusve@users.noreply.github.com>
Co-authored-by: abhidixi11 <44424462+abhidixi11@users.noreply.github.com>
Co-authored-by: Joseph Julicher <jjulicher@mac.com>
Co-authored-by: alfred gedeon <28123637+alfred2g@users.noreply.github.com>
* Add better pointer declaration readability
I revised the declaration of single-line pointers by splitting it into
multiple lines. Now, every pointer is declared (and initialized
accordingly) on its own line. This refactoring should enhance
readability and decrease the probability of error when a new pointer is
added/removed or a current one has its initialization value modified.
Signed-off-by: Cristian Cristea <cristiancristea00@gmail.com>
* Remove unnecessary whitespace characters and lines
It removes whitespace characters at the end of lines (empty or
othwerwise) and clear lines at the end of the file (only one remains).
It is an automatic operation done by git.
Signed-off-by: Cristian Cristea <cristiancristea00@gmail.com>
Signed-off-by: Cristian Cristea <cristiancristea00@gmail.com>
* Add supposrt for ARM CM55
* Fix file header
* Remove duplicate code
* Refactor portmacro.h
1. portmacro.h is re-factored into 2 parts - portmacrocommon.h which is
common to all ARMv8-M ports and portmacro.h which is different for
different compiler and architecture. This enables us to provide
Cortex-M55 ports without code duplication.
2. Update copy_files.py so that it copies Cortex-M55 ports correctly -
all files except portmacro.h are used from Cortex-M33 ports.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com>
* Add support for 16 MPU regions to GCC Cortex-M33 TZ port
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
* Add support for 16 MPU regions to Cortex-M33 NTZ GCC port
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
The secure side context management code now checks that the secure
context being saved or restored belongs to the task being switched-out
or switched-in respectively.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
This commit improves ARMv8-M security by pre-allocating secure-side task
context structures and changing how tasks reference a secure-side
context structure when calling a secure function. The new configuration
constant secureconfigMAX_SECURE_CONTEXTS sets the number of secure
context structures to pre-allocate. secureconfigMAX_SECURE_CONTEXTS
defaults to 8 if left undefined.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
* Use cast to fix warnings.
* Remove all empty definitions of portCLEAN_UP_TCB( pxTCB ) and
portALLOCATE_SECURE_CONTEXT( ulSecureStackSize ) from ports.
When these are undefined, the default empty definition is defined
in FreeRTOS.h.
Critical sections in FreeRTOS are implemented using the following two
functions:
void vPortEnterCritical( void )
{
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
}
void vPortExitCritical( void )
{
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
uxCriticalNesting is initialized to a large value at the start and set
to zero when the scheduler is started (xPortStartScheduler). As a
result, before the scheduler is started, a pair of enter/exit critical
section will leave the interrupts disabled because uxCriticalNesting
will not reach zero in the vPortExitCritical function. This is done to
ensure that the interrupts remain disabled from the time first FreeRTOS
API is called to the time when the scheduler is started. The scheduler
starting code is expected to enure that interrupts are enabled before
the first task starts executing.
Cortex-M33 ports were not enabling interrupts before starting the first
task and as a result, the first task was started with interrupts
disabled. This PR fixes the issue by ensuring that interrupts are
enabled before the first task is started.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
* Style: Change FreeRTOS websites in comments
* Style: Change freertos to FreeRTOS in comments
* Style: Remove broken link
Co-authored-by: Alfred Gedeon <gedeonag@amazon.com>
configSYSTICK_CLOCK_HZ should be used to configure SysTick to support
the use case when the clock for SysTick timer is scaled from the main
CPU clock.
configSYSTICK_CLOCK_HZ is defined to configCPU_CLOCK_HZ when it is not
defined in FreeRTOSConfig.h.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
The reason for the change is that the register is called System Handler
Priority Register 3 (SHPR3).
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Some of the privileged symbols were not being placed in their respective
sections. This commit addresses those and places them in
privileged_functions or privileged_data section.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
If xTaskCreate API is used to create a task, the task's stack is
allocated on heap using pvPortMalloc. This places the task's stack
in the privileged data section, if the heap is placed in the
privileged data section.
We use a separate MPU region to grant a task access to its stack.
If the task's stack is in the privileged data section, this results in
overlapping MPU regions as privileged data section is already protected
using a separate MPU region. ARMv8-M does not allow overlapping MPU
regions and this results in a fault. This commit ensures to not use a
separate MPU region for the task's stack if it lies within the
privileged data section.
Note that if the heap memory is placed in the privileged data section,
the xTaskCreate API cannot be used to create an unprivileged task as
the task's stack will be in the privileged data section and the task
won't have access to it. xTaskCreateRestricted and
xTaskCreateRestrictedStatic API should be used to create unprivileged
tasks.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>