You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
FreeRTOS-Kernel/portable/ARMv8M/non_secure/portmacrocommon.h

512 lines
20 KiB
C

/*
* FreeRTOS Kernel <DEVELOPMENT BRANCH>
* Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* https://www.FreeRTOS.org
* https://github.com/FreeRTOS
*
*/
#ifndef PORTMACROCOMMON_H
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define PORTMACROCOMMON_H
/* *INDENT-OFF* */
#ifdef __cplusplus
extern "C" {
#endif
/* *INDENT-ON* */
/*------------------------------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the given hardware
* and compiler.
*
* These settings should not be altered.
*------------------------------------------------------------------------------
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#ifndef configENABLE_FPU
#error configENABLE_FPU must be defined in FreeRTOSConfig.h. Set configENABLE_FPU to 1 to enable the FPU or 0 to disable the FPU.
#endif /* configENABLE_FPU */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#ifndef configENABLE_MPU
#error configENABLE_MPU must be defined in FreeRTOSConfig.h. Set configENABLE_MPU to 1 to enable the MPU or 0 to disable the MPU.
#endif /* configENABLE_MPU */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#ifndef configENABLE_TRUSTZONE
#error configENABLE_TRUSTZONE must be defined in FreeRTOSConfig.h. Set configENABLE_TRUSTZONE to 1 to enable TrustZone or 0 to disable TrustZone.
#endif /* configENABLE_TRUSTZONE */
/*-----------------------------------------------------------*/
/**
* @brief Type definitions.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_16_BITS )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#elif ( configTICK_TYPE_WIDTH_IN_BITS == TICK_TYPE_WIDTH_32_BITS )
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
/* 32-bit tick type on a 32-bit architecture, so reads of the tick count do
* not need to be guarded with a critical section. */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portTICK_TYPE_IS_ATOMIC 1
#else
#error configTICK_TYPE_WIDTH_IN_BITS set to unsupported tick type width.
#endif
/*-----------------------------------------------------------*/
/**
* Architecture specifics.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
#define portNOP()
#define portINLINE __inline
#ifndef portFORCE_INLINE
#define portFORCE_INLINE inline __attribute__( ( always_inline ) )
#endif
#define portHAS_STACK_OVERFLOW_CHECKING 1
/*-----------------------------------------------------------*/
/**
* @brief Extern declarations.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
extern BaseType_t xPortIsInsideInterrupt( void );
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
extern void vPortYield( void ) /* PRIVILEGED_FUNCTION */;
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
extern void vPortEnterCritical( void ) /* PRIVILEGED_FUNCTION */;
extern void vPortExitCritical( void ) /* PRIVILEGED_FUNCTION */;
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
extern uint32_t ulSetInterruptMask( void ) /* __attribute__(( naked )) PRIVILEGED_FUNCTION */;
extern void vClearInterruptMask( uint32_t ulMask ) /* __attribute__(( naked )) PRIVILEGED_FUNCTION */;
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#if ( configENABLE_TRUSTZONE == 1 )
extern void vPortAllocateSecureContext( uint32_t ulSecureStackSize ); /* __attribute__ (( naked )) */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
extern void vPortFreeSecureContext( uint32_t * pulTCB ) /* __attribute__ (( naked )) PRIVILEGED_FUNCTION */;
#endif /* configENABLE_TRUSTZONE */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#if ( configENABLE_MPU == 1 )
extern BaseType_t xIsPrivileged( void ) /* __attribute__ (( naked )) */;
extern void vResetPrivilege( void ) /* __attribute__ (( naked )) */;
#endif /* configENABLE_MPU */
/*-----------------------------------------------------------*/
/**
* @brief MPU specific constants.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#if ( configENABLE_MPU == 1 )
#define portUSING_MPU_WRAPPERS 1
#define portPRIVILEGE_BIT ( 0x80000000UL )
#else
#define portPRIVILEGE_BIT ( 0x0UL )
#endif /* configENABLE_MPU */
/* MPU settings that can be overriden in FreeRTOSConfig.h. */
#ifndef configTOTAL_MPU_REGIONS
/* Define to 8 for backward compatibility. */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define configTOTAL_MPU_REGIONS ( 8UL )
#endif
/* MPU regions. */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portPRIVILEGED_FLASH_REGION ( 0UL )
#define portUNPRIVILEGED_FLASH_REGION ( 1UL )
#define portUNPRIVILEGED_SYSCALLS_REGION ( 2UL )
#define portPRIVILEGED_RAM_REGION ( 3UL )
#define portSTACK_REGION ( 4UL )
#define portFIRST_CONFIGURABLE_REGION ( 5UL )
#define portLAST_CONFIGURABLE_REGION ( configTOTAL_MPU_REGIONS - 1UL )
#define portNUM_CONFIGURABLE_REGIONS ( ( portLAST_CONFIGURABLE_REGION - portFIRST_CONFIGURABLE_REGION ) + 1 )
#define portTOTAL_NUM_REGIONS ( portNUM_CONFIGURABLE_REGIONS + 1 ) /* Plus one to make space for the stack region. */
/* Device memory attributes used in MPU_MAIR registers.
*
* 8-bit values encoded as follows:
* Bit[7:4] - 0000 - Device Memory
* Bit[3:2] - 00 --> Device-nGnRnE
* 01 --> Device-nGnRE
* 10 --> Device-nGRE
* 11 --> Device-GRE
* Bit[1:0] - 00, Reserved.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portMPU_DEVICE_MEMORY_nGnRnE ( 0x00 ) /* 0000 0000 */
#define portMPU_DEVICE_MEMORY_nGnRE ( 0x04 ) /* 0000 0100 */
#define portMPU_DEVICE_MEMORY_nGRE ( 0x08 ) /* 0000 1000 */
#define portMPU_DEVICE_MEMORY_GRE ( 0x0C ) /* 0000 1100 */
/* Normal memory attributes used in MPU_MAIR registers. */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portMPU_NORMAL_MEMORY_NON_CACHEABLE ( 0x44 ) /* Non-cacheable. */
#define portMPU_NORMAL_MEMORY_BUFFERABLE_CACHEABLE ( 0xFF ) /* Non-Transient, Write-back, Read-Allocate and Write-Allocate. */
/* Attributes used in MPU_RBAR registers. */
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portMPU_REGION_NON_SHAREABLE ( 0UL << 3UL )
#define portMPU_REGION_INNER_SHAREABLE ( 1UL << 3UL )
#define portMPU_REGION_OUTER_SHAREABLE ( 2UL << 3UL )
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portMPU_REGION_PRIVILEGED_READ_WRITE ( 0UL << 1UL )
#define portMPU_REGION_READ_WRITE ( 1UL << 1UL )
#define portMPU_REGION_PRIVILEGED_READ_ONLY ( 2UL << 1UL )
#define portMPU_REGION_READ_ONLY ( 3UL << 1UL )
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portMPU_REGION_EXECUTE_NEVER ( 1UL )
/*-----------------------------------------------------------*/
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#if ( configENABLE_MPU == 1 )
/**
* @brief Settings to define an MPU region.
*/
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
typedef struct MPURegionSettings
{
uint32_t ulRBAR; /**< RBAR for the region. */
uint32_t ulRLAR; /**< RLAR for the region. */
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
} MPURegionSettings_t;
#if ( configUSE_MPU_WRAPPERS_V1 == 0 )
#ifndef configSYSTEM_CALL_STACK_SIZE
#error configSYSTEM_CALL_STACK_SIZE must be defined to the desired size of the system call stack in words for using MPU wrappers v2.
#endif
/**
* @brief System call stack.
*/
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
typedef struct SYSTEM_CALL_STACK_INFO
{
uint32_t ulSystemCallStackBuffer[ configSYSTEM_CALL_STACK_SIZE ];
uint32_t * pulSystemCallStack;
uint32_t * pulSystemCallStackLimit;
uint32_t * pulTaskStack;
uint32_t ulLinkRegisterAtSystemCallEntry;
uint32_t ulStackLimitRegisterAtSystemCallEntry;
} xSYSTEM_CALL_STACK_INFO;
#endif /* configUSE_MPU_WRAPPERS_V1 == 0 */
/**
* @brief MPU settings as stored in the TCB.
*/
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) )
#if ( configENABLE_TRUSTZONE == 1 )
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
/*
* +-----------+---------------+----------+-----------------+------------------------------+-----+
* | s16-s31 | s0-s15, FPSCR | r4-r11 | r0-r3, r12, LR, | xSecureContext, PSP, PSPLIM, | |
* | | | | PC, xPSR | CONTROL, EXC_RETURN | |
* +-----------+---------------+----------+-----------------+------------------------------+-----+
*
* <-----------><--------------><---------><----------------><-----------------------------><---->
* 16 16 8 8 5 1
*/
#define MAX_CONTEXT_SIZE 54
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#else /* #if( configENABLE_TRUSTZONE == 1 ) */
/*
* +-----------+---------------+----------+-----------------+----------------------+-----+
* | s16-s31 | s0-s15, FPSCR | r4-r11 | r0-r3, r12, LR, | PSP, PSPLIM, CONTROL | |
* | | | | PC, xPSR | EXC_RETURN | |
* +-----------+---------------+----------+-----------------+----------------------+-----+
*
* <-----------><--------------><---------><----------------><---------------------><---->
* 16 16 8 8 4 1
*/
#define MAX_CONTEXT_SIZE 53
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#endif /* #if( configENABLE_TRUSTZONE == 1 ) */
#else /* #if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) ) */
#if ( configENABLE_TRUSTZONE == 1 )
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
/*
* +----------+-----------------+------------------------------+-----+
* | r4-r11 | r0-r3, r12, LR, | xSecureContext, PSP, PSPLIM, | |
* | | PC, xPSR | CONTROL, EXC_RETURN | |
* +----------+-----------------+------------------------------+-----+
*
* <---------><----------------><------------------------------><---->
* 8 8 5 1
*/
#define MAX_CONTEXT_SIZE 22
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#else /* #if( configENABLE_TRUSTZONE == 1 ) */
/*
* +----------+-----------------+----------------------+-----+
* | r4-r11 | r0-r3, r12, LR, | PSP, PSPLIM, CONTROL | |
* | | PC, xPSR | EXC_RETURN | |
* +----------+-----------------+----------------------+-----+
*
* <---------><----------------><----------------------><---->
* 8 8 4 1
*/
#define MAX_CONTEXT_SIZE 21
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#endif /* #if( configENABLE_TRUSTZONE == 1 ) */
#endif /* #if ( ( configENABLE_FPU == 1 ) || ( configENABLE_MVE == 1 ) ) */
/* Flags used for xMPU_SETTINGS.ulTaskFlags member. */
#define portSTACK_FRAME_HAS_PADDING_FLAG ( 1UL << 0UL )
#define portTASK_IS_PRIVILEGED_FLAG ( 1UL << 1UL )
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
Add Access Control List to MPU ports (#765) This PR adds Access Control to kernel objects on a per task basis to MPU ports. The following needs to be defined in the `FreeRTOSConfig.h` to enable this feature: ```c #define configUSE_MPU_WRAPPERS_V1 0 #define configENABLE_ACCESS_CONTROL_LIST 1 ``` This PR adds the following new APIs: ```c void vGrantAccessToTask( TaskHandle_t xTask, TaskHandle_t xTaskToGrantAccess ); void vRevokeAccessToTask( TaskHandle_t xTask, TaskHandle_t xTaskToRevokeAccess ); void vGrantAccessToSemaphore( TaskHandle_t xTask, SemaphoreHandle_t xSemaphoreToGrantAccess ); void vRevokeAccessToSemaphore( TaskHandle_t xTask, SemaphoreHandle_t xSemaphoreToRevokeAccess ); void vGrantAccessToQueue( TaskHandle_t xTask, QueueHandle_t xQueueToGrantAccess ); void vRevokeAccessToQueue( TaskHandle_t xTask, QueueHandle_t xQueueToRevokeAccess ); void vGrantAccessToQueueSet( TaskHandle_t xTask, QueueSetHandle_t xQueueSetToGrantAccess ); void vRevokeAccessToQueueSet( TaskHandle_t xTask, QueueSetHandle_t xQueueSetToRevokeAccess ); void vGrantAccessToEventGroup( TaskHandle_t xTask, EventGroupHandle_t xEventGroupToGrantAccess ); void vRevokeAccessToEventGroup( TaskHandle_t xTask, EventGroupHandle_t xEventGroupToRevokeAccess ); void vGrantAccessToStreamBuffer( TaskHandle_t xTask, StreamBufferHandle_t xStreamBufferToGrantAccess ); void vRevokeAccessToStreamBuffer( TaskHandle_t xTask, StreamBufferHandle_t xStreamBufferToRevokeAccess ); void vGrantAccessToMessageBuffer( TaskHandle_t xTask, MessageBufferHandle_t xMessageBufferToGrantAccess ); void vRevokeAccessToMessageBuffer( TaskHandle_t xTask, MessageBufferHandle_t xMessageBufferToRevokeAccess ); void vGrantAccessToTimer( TaskHandle_t xTask, TimerHandle_t xTimerToGrantAccess ); void vRevokeAccessToTimer( TaskHandle_t xTask, TimerHandle_t xTimerToRevokeAccess ); ``` An unprivileged task by default has access to itself only and no other kernel object. The application writer needs to explicitly grant an unprivileged task access to all the kernel objects it needs. The best place to do that is before starting the scheduler when all the kernel objects are created. For example, let's say an unprivileged tasks needs access to a queue and an event group, the application writer needs to do the following: ```c vGrantAccessToQueue( xUnprivilegedTaskHandle, xQueue ); vGrantAccessToEventGroup( xUnprivilegedTaskHandle, xEventGroup ); ``` The application writer MUST revoke all the accesses before deleting a task. Failing to do so will result in undefined behavior. In the above example, the application writer needs to make the following 2 calls before deleting the task: ```c vRevokeAccessToQueue( xUnprivilegedTaskHandle, xQueue ); vRevokeAccessToEventGroup( xUnprivilegedTaskHandle, xEventGroup ); ```
1 year ago
/* Size of an Access Control List (ACL) entry in bits and bytes. */
#define portACL_ENTRY_SIZE_BYTES ( 4U )
#define portACL_ENTRY_SIZE_BITS ( 32U )
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
typedef struct MPU_SETTINGS
{
uint32_t ulMAIR0; /**< MAIR0 for the task containing attributes for all the 4 per task regions. */
MPURegionSettings_t xRegionsSettings[ portTOTAL_NUM_REGIONS ]; /**< Settings for 4 per task regions. */
uint32_t ulContext[ MAX_CONTEXT_SIZE ];
uint32_t ulTaskFlags;
#if ( configUSE_MPU_WRAPPERS_V1 == 0 )
xSYSTEM_CALL_STACK_INFO xSystemCallStackInfo;
Add Access Control List to MPU ports (#765) This PR adds Access Control to kernel objects on a per task basis to MPU ports. The following needs to be defined in the `FreeRTOSConfig.h` to enable this feature: ```c #define configUSE_MPU_WRAPPERS_V1 0 #define configENABLE_ACCESS_CONTROL_LIST 1 ``` This PR adds the following new APIs: ```c void vGrantAccessToTask( TaskHandle_t xTask, TaskHandle_t xTaskToGrantAccess ); void vRevokeAccessToTask( TaskHandle_t xTask, TaskHandle_t xTaskToRevokeAccess ); void vGrantAccessToSemaphore( TaskHandle_t xTask, SemaphoreHandle_t xSemaphoreToGrantAccess ); void vRevokeAccessToSemaphore( TaskHandle_t xTask, SemaphoreHandle_t xSemaphoreToRevokeAccess ); void vGrantAccessToQueue( TaskHandle_t xTask, QueueHandle_t xQueueToGrantAccess ); void vRevokeAccessToQueue( TaskHandle_t xTask, QueueHandle_t xQueueToRevokeAccess ); void vGrantAccessToQueueSet( TaskHandle_t xTask, QueueSetHandle_t xQueueSetToGrantAccess ); void vRevokeAccessToQueueSet( TaskHandle_t xTask, QueueSetHandle_t xQueueSetToRevokeAccess ); void vGrantAccessToEventGroup( TaskHandle_t xTask, EventGroupHandle_t xEventGroupToGrantAccess ); void vRevokeAccessToEventGroup( TaskHandle_t xTask, EventGroupHandle_t xEventGroupToRevokeAccess ); void vGrantAccessToStreamBuffer( TaskHandle_t xTask, StreamBufferHandle_t xStreamBufferToGrantAccess ); void vRevokeAccessToStreamBuffer( TaskHandle_t xTask, StreamBufferHandle_t xStreamBufferToRevokeAccess ); void vGrantAccessToMessageBuffer( TaskHandle_t xTask, MessageBufferHandle_t xMessageBufferToGrantAccess ); void vRevokeAccessToMessageBuffer( TaskHandle_t xTask, MessageBufferHandle_t xMessageBufferToRevokeAccess ); void vGrantAccessToTimer( TaskHandle_t xTask, TimerHandle_t xTimerToGrantAccess ); void vRevokeAccessToTimer( TaskHandle_t xTask, TimerHandle_t xTimerToRevokeAccess ); ``` An unprivileged task by default has access to itself only and no other kernel object. The application writer needs to explicitly grant an unprivileged task access to all the kernel objects it needs. The best place to do that is before starting the scheduler when all the kernel objects are created. For example, let's say an unprivileged tasks needs access to a queue and an event group, the application writer needs to do the following: ```c vGrantAccessToQueue( xUnprivilegedTaskHandle, xQueue ); vGrantAccessToEventGroup( xUnprivilegedTaskHandle, xEventGroup ); ``` The application writer MUST revoke all the accesses before deleting a task. Failing to do so will result in undefined behavior. In the above example, the application writer needs to make the following 2 calls before deleting the task: ```c vRevokeAccessToQueue( xUnprivilegedTaskHandle, xQueue ); vRevokeAccessToEventGroup( xUnprivilegedTaskHandle, xEventGroup ); ```
1 year ago
#if ( configENABLE_ACCESS_CONTROL_LIST == 1 )
uint32_t ulAccessControlList[ ( configPROTECTED_KERNEL_OBJECT_POOL_SIZE / portACL_ENTRY_SIZE_BITS ) + 1 ];
Add Access Control List to MPU ports (#765) This PR adds Access Control to kernel objects on a per task basis to MPU ports. The following needs to be defined in the `FreeRTOSConfig.h` to enable this feature: ```c #define configUSE_MPU_WRAPPERS_V1 0 #define configENABLE_ACCESS_CONTROL_LIST 1 ``` This PR adds the following new APIs: ```c void vGrantAccessToTask( TaskHandle_t xTask, TaskHandle_t xTaskToGrantAccess ); void vRevokeAccessToTask( TaskHandle_t xTask, TaskHandle_t xTaskToRevokeAccess ); void vGrantAccessToSemaphore( TaskHandle_t xTask, SemaphoreHandle_t xSemaphoreToGrantAccess ); void vRevokeAccessToSemaphore( TaskHandle_t xTask, SemaphoreHandle_t xSemaphoreToRevokeAccess ); void vGrantAccessToQueue( TaskHandle_t xTask, QueueHandle_t xQueueToGrantAccess ); void vRevokeAccessToQueue( TaskHandle_t xTask, QueueHandle_t xQueueToRevokeAccess ); void vGrantAccessToQueueSet( TaskHandle_t xTask, QueueSetHandle_t xQueueSetToGrantAccess ); void vRevokeAccessToQueueSet( TaskHandle_t xTask, QueueSetHandle_t xQueueSetToRevokeAccess ); void vGrantAccessToEventGroup( TaskHandle_t xTask, EventGroupHandle_t xEventGroupToGrantAccess ); void vRevokeAccessToEventGroup( TaskHandle_t xTask, EventGroupHandle_t xEventGroupToRevokeAccess ); void vGrantAccessToStreamBuffer( TaskHandle_t xTask, StreamBufferHandle_t xStreamBufferToGrantAccess ); void vRevokeAccessToStreamBuffer( TaskHandle_t xTask, StreamBufferHandle_t xStreamBufferToRevokeAccess ); void vGrantAccessToMessageBuffer( TaskHandle_t xTask, MessageBufferHandle_t xMessageBufferToGrantAccess ); void vRevokeAccessToMessageBuffer( TaskHandle_t xTask, MessageBufferHandle_t xMessageBufferToRevokeAccess ); void vGrantAccessToTimer( TaskHandle_t xTask, TimerHandle_t xTimerToGrantAccess ); void vRevokeAccessToTimer( TaskHandle_t xTask, TimerHandle_t xTimerToRevokeAccess ); ``` An unprivileged task by default has access to itself only and no other kernel object. The application writer needs to explicitly grant an unprivileged task access to all the kernel objects it needs. The best place to do that is before starting the scheduler when all the kernel objects are created. For example, let's say an unprivileged tasks needs access to a queue and an event group, the application writer needs to do the following: ```c vGrantAccessToQueue( xUnprivilegedTaskHandle, xQueue ); vGrantAccessToEventGroup( xUnprivilegedTaskHandle, xEventGroup ); ``` The application writer MUST revoke all the accesses before deleting a task. Failing to do so will result in undefined behavior. In the above example, the application writer needs to make the following 2 calls before deleting the task: ```c vRevokeAccessToQueue( xUnprivilegedTaskHandle, xQueue ); vRevokeAccessToEventGroup( xUnprivilegedTaskHandle, xEventGroup ); ```
1 year ago
#endif
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#endif
} xMPU_SETTINGS;
#endif /* configENABLE_MPU == 1 */
/*-----------------------------------------------------------*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
/**
* @brief Validate priority of ISRs that are allowed to call FreeRTOS
* system calls.
*/
#ifdef configASSERT
#if ( portHAS_ARMV8M_MAIN_EXTENSION == 1 )
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
void vPortValidateInterruptPriority( void );
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
#endif
#endif
/**
* @brief SVC numbers.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portSVC_ALLOCATE_SECURE_CONTEXT 0
#define portSVC_FREE_SECURE_CONTEXT 1
#define portSVC_START_SCHEDULER 2
#define portSVC_RAISE_PRIVILEGE 3
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#define portSVC_SYSTEM_CALL_ENTER 4 /* System calls with upto 4 parameters. */
#define portSVC_SYSTEM_CALL_ENTER_1 5 /* System calls with 5 parameters. */
#define portSVC_SYSTEM_CALL_EXIT 6
/*-----------------------------------------------------------*/
/**
* @brief Scheduler utilities.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portYIELD() vPortYield()
#define portNVIC_INT_CTRL_REG ( *( ( volatile uint32_t * ) 0xe000ed04 ) )
#define portNVIC_PENDSVSET_BIT ( 1UL << 28UL )
#define portEND_SWITCHING_ISR( xSwitchRequired ) \
do \
{ \
if( xSwitchRequired ) \
{ \
traceISR_EXIT_TO_SCHEDULER(); \
portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT; \
} \
else \
{ \
traceISR_EXIT(); \
} \
} while( 0 )
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/**
* @brief Critical section management.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portSET_INTERRUPT_MASK_FROM_ISR() ulSetInterruptMask()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR( x ) vClearInterruptMask( x )
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
/*-----------------------------------------------------------*/
/**
* @brief Tickless idle/low power functionality.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#ifndef portSUPPRESS_TICKS_AND_SLEEP
extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ) vPortSuppressTicksAndSleep( xExpectedIdleTime )
#endif
/*-----------------------------------------------------------*/
/**
* @brief Task function macros as described on the FreeRTOS.org WEB site.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void * pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void * pvParameters )
/*-----------------------------------------------------------*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#if ( configENABLE_TRUSTZONE == 1 )
/**
* @brief Allocate a secure context for the task.
*
* Tasks are not created with a secure context. Any task that is going to call
* secure functions must call portALLOCATE_SECURE_CONTEXT() to allocate itself a
* secure context before it calls any secure function.
*
* @param[in] ulSecureStackSize The size of the secure stack to be allocated.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portALLOCATE_SECURE_CONTEXT( ulSecureStackSize ) vPortAllocateSecureContext( ulSecureStackSize )
/**
* @brief Called when a task is deleted to delete the task's secure context,
* if it has one.
*
* @param[in] pxTCB The TCB of the task being deleted.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portCLEAN_UP_TCB( pxTCB ) vPortFreeSecureContext( ( uint32_t * ) pxTCB )
#endif /* configENABLE_TRUSTZONE */
/*-----------------------------------------------------------*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#if ( configENABLE_MPU == 1 )
/**
* @brief Checks whether or not the processor is privileged.
*
* @return 1 if the processor is already privileged, 0 otherwise.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portIS_PRIVILEGED() xIsPrivileged()
/**
* @brief Raise an SVC request to raise privilege.
*
* The SVC handler checks that the SVC was raised from a system call and only
* then it raises the privilege. If this is called from any other place,
* the privilege is not raised.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portRAISE_PRIVILEGE() __asm volatile ( "svc %0 \n" ::"i" ( portSVC_RAISE_PRIVILEGE ) : "memory" );
/**
* @brief Lowers the privilege level by setting the bit 0 of the CONTROL
* register.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portRESET_PRIVILEGE() vResetPrivilege()
#else
#define portIS_PRIVILEGED()
#define portRAISE_PRIVILEGE()
#define portRESET_PRIVILEGE()
#endif /* configENABLE_MPU */
/*-----------------------------------------------------------*/
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#if ( configENABLE_MPU == 1 )
extern BaseType_t xPortIsTaskPrivileged( void );
/**
* @brief Checks whether or not the calling task is privileged.
*
* @return pdTRUE if the calling task is privileged, pdFALSE otherwise.
*/
#define portIS_TASK_PRIVILEGED() xPortIsTaskPrivileged()
Memory Protection Unit (MPU) Enhancements (#705) Memory Protection Unit (MPU) Enhancements This commit introduces a new MPU wrapper that places additional restrictions on unprivileged tasks. The following is the list of changes introduced with the new MPU wrapper: 1. Opaque and indirectly verifiable integers for kernel object handles: All the kernel object handles (for example, queue handles) are now opaque integers. Previously object handles were raw pointers. 2. Saving the task context in Task Control Block (TCB): When a task is swapped out by the scheduler, the task's context is now saved in its TCB. Previously the task's context was saved on its stack. 3. Execute system calls on a separate privileged only stack: FreeRTOS system calls, which execute with elevated privilege, now use a separate privileged only stack. Previously system calls used the calling task's stack. The application writer can control the size of the system call stack using new configSYSTEM_CALL_STACK_SIZE config macro. 4. Memory bounds checks: FreeRTOS system calls which accept a pointer and de-reference it, now verify that the calling task has required permissions to access the memory location referenced by the pointer. 5. System call restrictions: The following system calls are no longer available to unprivileged tasks: - vQueueDelete - xQueueCreateMutex - xQueueCreateMutexStatic - xQueueCreateCountingSemaphore - xQueueCreateCountingSemaphoreStatic - xQueueGenericCreate - xQueueGenericCreateStatic - xQueueCreateSet - xQueueRemoveFromSet - xQueueGenericReset - xTaskCreate - xTaskCreateStatic - vTaskDelete - vTaskPrioritySet - vTaskSuspendAll - xTaskResumeAll - xTaskGetHandle - xTaskCallApplicationTaskHook - vTaskList - vTaskGetRunTimeStats - xTaskCatchUpTicks - xEventGroupCreate - xEventGroupCreateStatic - vEventGroupDelete - xStreamBufferGenericCreate - xStreamBufferGenericCreateStatic - vStreamBufferDelete - xStreamBufferReset Also, an unprivileged task can no longer use vTaskSuspend to suspend any task other than itself. We thank the following people for their inputs in these enhancements: - David Reiss of Meta Platforms, Inc. - Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling of School of Computer Science and Engineering, Southeast University, China. - Xinwen Fu of Department of Computer Science, University of Massachusetts Lowell, USA. - Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado Boulder, USA.
2 years ago
#endif /* configENABLE_MPU == 1 */
/*-----------------------------------------------------------*/
/**
* @brief Barriers.
*/
Armv8-M (except Cortex-M23) interrupt priority checking (#673) * Armv8-M: Formatting changes Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Armv8-M: Add support for interrupt priority check FreeRTOS provides `FromISR` system calls which can be called directly from interrupt service routines. It is crucial that the priority of these ISRs is set to same or lower value (numerically higher) than that of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. Add a check to trigger an assert when an ISR with priority higher (numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls `FromISR` system calls if `configASSERT` macro is defined. In addition, add a config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt priority check while running on QEMU. Based on the discussion https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt priority bits in QEMU do not match the real hardware. Therefore the assert that checks the number of implemented bits and __NVIC_PRIO_BITS will always fail. The config option `configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the `FreeRTOSConfig.h` for QEMU targets. Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> * Use SHPR2 for calculating interrupt priority bits This removes the dependency on the secure software to mark the interrupt as non-secure. Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> --------- Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com> Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com> Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
2 years ago
#define portMEMORY_BARRIER() __asm volatile ( "" ::: "memory" )
/*-----------------------------------------------------------*/
/* Select correct value of configUSE_PORT_OPTIMISED_TASK_SELECTION
* based on whether or not Mainline extension is implemented. */
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#if ( portHAS_ARMV8M_MAIN_EXTENSION == 1 )
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#else
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 0
#endif
#endif /* #ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION */
/**
* @brief Port-optimised task selection.
*/
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 1 )
/**
* @brief Count the number of leading zeros in a 32-bit value.
*/
static portFORCE_INLINE uint32_t ulPortCountLeadingZeros( uint32_t ulBitmap )
{
uint32_t ulReturn;
__asm volatile ( "clz %0, %1" : "=r" ( ulReturn ) : "r" ( ulBitmap ) : "memory" );
return ulReturn;
}
/* Check the configuration. */
#if ( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 different priorities as tasks that share a priority will time slice.
#endif
#if ( portHAS_ARMV8M_MAIN_EXTENSION == 0 )
#error ARMv8-M baseline implementations (such as Cortex-M23) do not support port-optimised task selection. Please set configUSE_PORT_OPTIMISED_TASK_SELECTION to 0 or leave it undefined.
#endif
/**
* @brief Store/clear the ready priorities in a bit map.
*/
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )
/**
* @brief Get the priority of the highest-priority task that is ready to execute.
*/
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31UL - ulPortCountLeadingZeros( ( uxReadyPriorities ) ) )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
/* *INDENT-OFF* */
#ifdef __cplusplus
}
#endif
/* *INDENT-ON* */
#endif /* PORTMACROCOMMON_H */