|
|
|
/*
|
|
|
|
FreeRTOS V7.4.0 - Copyright (C) 2013 Real Time Engineers Ltd.
|
|
|
|
|
|
|
|
FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
|
|
|
|
http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
|
|
|
|
|
|
|
***************************************************************************
|
|
|
|
* *
|
|
|
|
* FreeRTOS tutorial books are available in pdf and paperback. *
|
|
|
|
* Complete, revised, and edited pdf reference manuals are also *
|
|
|
|
* available. *
|
|
|
|
* *
|
|
|
|
* Purchasing FreeRTOS documentation will not only help you, by *
|
|
|
|
* ensuring you get running as quickly as possible and with an *
|
|
|
|
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
|
|
|
* the FreeRTOS project to continue with its mission of providing *
|
|
|
|
* professional grade, cross platform, de facto standard solutions *
|
|
|
|
* for microcontrollers - completely free of charge! *
|
|
|
|
* *
|
|
|
|
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
|
|
|
* *
|
|
|
|
* Thank you for using FreeRTOS, and thank you for your support! *
|
|
|
|
* *
|
|
|
|
***************************************************************************
|
|
|
|
|
|
|
|
|
|
|
|
This file is part of the FreeRTOS distribution.
|
|
|
|
|
|
|
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
|
|
|
the terms of the GNU General Public License (version 2) as published by the
|
|
|
|
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
|
|
|
|
|
|
|
>>>>>>NOTE<<<<<< The modification to the GPL is included to allow you to
|
|
|
|
distribute a combined work that includes FreeRTOS without being obliged to
|
|
|
|
provide the source code for proprietary components outside of the FreeRTOS
|
|
|
|
kernel.
|
|
|
|
|
|
|
|
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
|
|
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
|
|
details. You should have received a copy of the GNU General Public License
|
|
|
|
and the FreeRTOS license exception along with FreeRTOS; if not itcan be
|
|
|
|
viewed here: http://www.freertos.org/a00114.html and also obtained by
|
|
|
|
writing to Real Time Engineers Ltd., contact details for whom are available
|
|
|
|
on the FreeRTOS WEB site.
|
|
|
|
|
|
|
|
1 tab == 4 spaces!
|
|
|
|
|
|
|
|
***************************************************************************
|
|
|
|
* *
|
|
|
|
* Having a problem? Start by reading the FAQ "My application does *
|
|
|
|
* not run, what could be wrong?" *
|
|
|
|
* *
|
|
|
|
* http://www.FreeRTOS.org/FAQHelp.html *
|
|
|
|
* *
|
|
|
|
***************************************************************************
|
|
|
|
|
|
|
|
|
|
|
|
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
|
|
|
|
license and Real Time Engineers Ltd. contact details.
|
|
|
|
|
|
|
|
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
|
|
|
including FreeRTOS+Trace - an indispensable productivity tool, and our new
|
|
|
|
fully thread aware and reentrant UDP/IP stack.
|
|
|
|
|
|
|
|
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
|
|
|
|
Integrity Systems, who sell the code with commercial support,
|
|
|
|
indemnification and middleware, under the OpenRTOS brand.
|
|
|
|
|
|
|
|
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
|
|
|
engineered and independently SIL3 certified version for use in safety and
|
|
|
|
mission critical applications that require provable dependability.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Kernel includes. */
|
|
|
|
#include "FreeRTOS.h"
|
|
|
|
#include "semphr.h"
|
|
|
|
#include "task.h"
|
|
|
|
|
|
|
|
/* Hardware includes. */
|
|
|
|
#include "fecbd.h"
|
|
|
|
#include "mii.h"
|
|
|
|
#include "eth_phy.h"
|
|
|
|
#include "eth.h"
|
|
|
|
|
|
|
|
/* uIP includes. */
|
|
|
|
#include "uip.h"
|
|
|
|
#include "uip_arp.h"
|
|
|
|
|
|
|
|
/* Delay between polling the PHY to see if a link has been established. */
|
|
|
|
#define fecLINK_DELAY ( 500 / portTICK_RATE_MS )
|
|
|
|
|
|
|
|
/* Delay to wait for an MII access. */
|
|
|
|
#define fecMII_DELAY ( 10 / portTICK_RATE_MS )
|
|
|
|
#define fecMAX_POLLS ( 20 )
|
|
|
|
|
|
|
|
/* Constants used to delay while waiting for a tx descriptor to be free. */
|
|
|
|
#define fecMAX_WAIT_FOR_TX_BUFFER ( 200 / portTICK_RATE_MS )
|
|
|
|
|
|
|
|
/* We only use a single Tx descriptor which can lead to Txed packets being sent
|
|
|
|
twice (due to a bug in the FEC silicon). However, in this case the bug is used
|
|
|
|
to our advantage in that it means the uip-split mechanism is not required. */
|
|
|
|
#define fecNUM_FEC_TX_BUFFERS ( 1 )
|
|
|
|
#define fecTX_BUFFER_TO_USE ( 0 )
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
/* The semaphore used to wake the uIP task when data arrives. */
|
|
|
|
xSemaphoreHandle xFECSemaphore = NULL, xTxSemaphore = NULL;
|
|
|
|
|
|
|
|
/* The buffer used by the uIP stack. In this case the pointer is used to
|
|
|
|
point to one of the Rx buffers to effect a zero copy policy. */
|
|
|
|
unsigned portCHAR *uip_buf;
|
|
|
|
|
|
|
|
/* The DMA descriptors. This is a char array to allow us to align it correctly. */
|
|
|
|
static unsigned portCHAR xFECTxDescriptors_unaligned[ ( fecNUM_FEC_TX_BUFFERS * sizeof( FECBD ) ) + 16 ];
|
|
|
|
static unsigned portCHAR xFECRxDescriptors_unaligned[ ( configNUM_FEC_RX_BUFFERS * sizeof( FECBD ) ) + 16 ];
|
|
|
|
static FECBD *xFECTxDescriptors;
|
|
|
|
static FECBD *xFECRxDescriptors;
|
|
|
|
|
|
|
|
/* The DMA buffers. These are char arrays to allow them to be aligned correctly. */
|
|
|
|
static unsigned portCHAR ucFECRxBuffers[ ( configNUM_FEC_RX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
|
|
|
|
static unsigned portBASE_TYPE uxNextRxBuffer = 0, uxIndexToBufferOwner = 0;
|
|
|
|
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Enable all the required interrupts in the FEC and in the interrupt controller.
|
|
|
|
*/
|
|
|
|
static void prvEnableFECInterrupts( void );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Reset the FEC if we get into an unrecoverable state.
|
|
|
|
*/
|
|
|
|
static void prvResetFEC( portBASE_TYPE xCalledFromISR );
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
|
|
|
|
*
|
|
|
|
* Write a value to a PHY's MII register.
|
|
|
|
*
|
|
|
|
* Parameters:
|
|
|
|
* ch FEC channel
|
|
|
|
* phy_addr Address of the PHY.
|
|
|
|
* reg_addr Address of the register in the PHY.
|
|
|
|
* data Data to be written to the PHY register.
|
|
|
|
*
|
|
|
|
* Return Values:
|
|
|
|
* 0 on failure
|
|
|
|
* 1 on success.
|
|
|
|
*
|
|
|
|
* Please refer to your PHY manual for registers and their meanings.
|
|
|
|
* mii_write() polls for the FEC's MII interrupt event and clears it.
|
|
|
|
* If after a suitable amount of time the event isn't triggered, a
|
|
|
|
* value of 0 is returned.
|
|
|
|
*/
|
|
|
|
static int fec_mii_write( int phy_addr, int reg_addr, int data )
|
|
|
|
{
|
|
|
|
int timeout, iReturn;
|
|
|
|
uint32 eimr;
|
|
|
|
|
|
|
|
/* Clear the MII interrupt bit */
|
|
|
|
MCF_FEC_EIR = MCF_FEC_EIR_MII;
|
|
|
|
|
|
|
|
/* Mask the MII interrupt */
|
|
|
|
eimr = MCF_FEC_EIMR;
|
|
|
|
MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
|
|
|
|
|
|
|
|
/* Write to the MII Management Frame Register to kick-off the MII write */
|
|
|
|
MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_WRITE | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10 | MCF_FEC_MMFR_DATA( data );
|
|
|
|
|
|
|
|
/* Poll for the MII interrupt (interrupt should be masked) */
|
|
|
|
for( timeout = 0; timeout < fecMAX_POLLS; timeout++ )
|
|
|
|
{
|
|
|
|
if( MCF_FEC_EIR & MCF_FEC_EIR_MII )
|
|
|
|
{
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
vTaskDelay( fecMII_DELAY );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( timeout == fecMAX_POLLS )
|
|
|
|
{
|
|
|
|
iReturn = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
iReturn = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clear the MII interrupt bit */
|
|
|
|
MCF_FEC_EIR = MCF_FEC_EIR_MII;
|
|
|
|
|
|
|
|
/* Restore the EIMR */
|
|
|
|
MCF_FEC_EIMR = eimr;
|
|
|
|
|
|
|
|
return iReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
/*
|
|
|
|
* FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
|
|
|
|
*
|
|
|
|
* Read a value from a PHY's MII register.
|
|
|
|
*
|
|
|
|
* Parameters:
|
|
|
|
* ch FEC channel
|
|
|
|
* phy_addr Address of the PHY.
|
|
|
|
* reg_addr Address of the register in the PHY.
|
|
|
|
* data Pointer to storage for the Data to be read
|
|
|
|
* from the PHY register (passed by reference)
|
|
|
|
*
|
|
|
|
* Return Values:
|
|
|
|
* 0 on failure
|
|
|
|
* 1 on success.
|
|
|
|
*
|
|
|
|
* Please refer to your PHY manual for registers and their meanings.
|
|
|
|
* mii_read() polls for the FEC's MII interrupt event and clears it.
|
|
|
|
* If after a suitable amount of time the event isn't triggered, a
|
|
|
|
* value of 0 is returned.
|
|
|
|
*/
|
|
|
|
static int fec_mii_read( int phy_addr, int reg_addr, unsigned portSHORT* data )
|
|
|
|
{
|
|
|
|
int timeout, iReturn;
|
|
|
|
uint32 eimr;
|
|
|
|
|
|
|
|
/* Clear the MII interrupt bit */
|
|
|
|
MCF_FEC_EIR = MCF_FEC_EIR_MII;
|
|
|
|
|
|
|
|
/* Mask the MII interrupt */
|
|
|
|
eimr = MCF_FEC_EIMR;
|
|
|
|
MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
|
|
|
|
|
|
|
|
/* Write to the MII Management Frame Register to kick-off the MII read */
|
|
|
|
MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_READ | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10;
|
|
|
|
|
|
|
|
/* Poll for the MII interrupt (interrupt should be masked) */
|
|
|
|
for( timeout = 0; timeout < fecMAX_POLLS; timeout++ )
|
|
|
|
{
|
|
|
|
if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
|
|
|
|
{
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
vTaskDelay( fecMII_DELAY );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( timeout == fecMAX_POLLS )
|
|
|
|
{
|
|
|
|
iReturn = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*data = (uint16)(MCF_FEC_MMFR & 0x0000FFFF);
|
|
|
|
iReturn = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clear the MII interrupt bit */
|
|
|
|
MCF_FEC_EIR = MCF_FEC_EIR_MII;
|
|
|
|
|
|
|
|
/* Restore the EIMR */
|
|
|
|
MCF_FEC_EIMR = eimr;
|
|
|
|
|
|
|
|
return iReturn;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
/*
|
|
|
|
* FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
|
|
|
|
*
|
|
|
|
* Generate the hash table settings for the given address
|
|
|
|
*
|
|
|
|
* Parameters:
|
|
|
|
* addr 48-bit (6 byte) Address to generate the hash for
|
|
|
|
*
|
|
|
|
* Return Value:
|
|
|
|
* The 6 most significant bits of the 32-bit CRC result
|
|
|
|
*/
|
|
|
|
static unsigned portCHAR fec_hash_address( const unsigned portCHAR* addr )
|
|
|
|
{
|
|
|
|
unsigned portLONG crc;
|
|
|
|
unsigned portCHAR byte;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
crc = 0xFFFFFFFF;
|
|
|
|
for(i=0; i<6; ++i)
|
|
|
|
{
|
|
|
|
byte = addr[i];
|
|
|
|
for(j=0; j<8; ++j)
|
|
|
|
{
|
|
|
|
if((byte & 0x01)^(crc & 0x01))
|
|
|
|
{
|
|
|
|
crc >>= 1;
|
|
|
|
crc = crc ^ 0xEDB88320;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
crc >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
byte >>= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (unsigned portCHAR)(crc >> 26);
|
|
|
|
}
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
/*
|
|
|
|
* FUNCTION ADAPTED FROM FREESCALE SUPPLIED SOURCE
|
|
|
|
*
|
|
|
|
* Set the Physical (Hardware) Address and the Individual Address
|
|
|
|
* Hash in the selected FEC
|
|
|
|
*
|
|
|
|
* Parameters:
|
|
|
|
* ch FEC channel
|
|
|
|
* pa Physical (Hardware) Address for the selected FEC
|
|
|
|
*/
|
|
|
|
static void fec_set_address( const unsigned portCHAR *pa )
|
|
|
|
{
|
|
|
|
unsigned portCHAR crc;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the Physical Address
|
|
|
|
*/
|
|
|
|
/* Set the source address for the controller */
|
|
|
|
MCF_FEC_PALR = ( pa[ 0 ] << 24 ) | ( pa[ 1 ] << 16 ) | ( pa[ 2 ] << 8 ) | ( pa[ 3 ] << 0 );
|
|
|
|
MCF_FEC_PAUR = ( pa[ 4 ] << 24 ) | ( pa[ 5 ] << 16 );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculate and set the hash for given Physical Address
|
|
|
|
* in the Individual Address Hash registers
|
|
|
|
*/
|
|
|
|
crc = fec_hash_address( pa );
|
|
|
|
if( crc >= 32 )
|
|
|
|
{
|
|
|
|
MCF_FEC_IAUR |= (unsigned portLONG)(1 << (crc - 32));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
MCF_FEC_IALR |= (unsigned portLONG)(1 << crc);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
static void prvInitialiseFECBuffers( void )
|
|
|
|
{
|
|
|
|
unsigned portBASE_TYPE ux;
|
|
|
|
unsigned portCHAR *pcBufPointer;
|
|
|
|
|
|
|
|
/* Correctly align the Tx descriptor pointer. */
|
|
|
|
pcBufPointer = &( xFECTxDescriptors_unaligned[ 0 ] );
|
|
|
|
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
|
|
|
|
{
|
|
|
|
pcBufPointer++;
|
|
|
|
}
|
|
|
|
|
|
|
|
xFECTxDescriptors = ( FECBD * ) pcBufPointer;
|
|
|
|
|
|
|
|
/* Likewise the Rx descriptor pointer. */
|
|
|
|
pcBufPointer = &( xFECRxDescriptors_unaligned[ 0 ] );
|
|
|
|
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
|
|
|
|
{
|
|
|
|
pcBufPointer++;
|
|
|
|
}
|
|
|
|
|
|
|
|
xFECRxDescriptors = ( FECBD * ) pcBufPointer;
|
|
|
|
|
|
|
|
|
|
|
|
/* Setup the Tx buffers and descriptors. There is no separate Tx buffer
|
|
|
|
to point to (the Rx buffers are actually used) so the data member is
|
|
|
|
set to NULL for now. */
|
|
|
|
for( ux = 0; ux < fecNUM_FEC_TX_BUFFERS; ux++ )
|
|
|
|
{
|
|
|
|
xFECTxDescriptors[ ux ].status = TX_BD_TC;
|
|
|
|
xFECTxDescriptors[ ux ].data = NULL;
|
|
|
|
xFECTxDescriptors[ ux ].length = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Setup the Rx buffers and descriptors, having first ensured correct
|
|
|
|
alignment. */
|
|
|
|
pcBufPointer = &( ucFECRxBuffers[ 0 ] );
|
|
|
|
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
|
|
|
|
{
|
|
|
|
pcBufPointer++;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ux = 0; ux < configNUM_FEC_RX_BUFFERS; ux++ )
|
|
|
|
{
|
|
|
|
xFECRxDescriptors[ ux ].status = RX_BD_E;
|
|
|
|
xFECRxDescriptors[ ux ].length = configFEC_BUFFER_SIZE;
|
|
|
|
xFECRxDescriptors[ ux ].data = pcBufPointer;
|
|
|
|
pcBufPointer += configFEC_BUFFER_SIZE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set the wrap bit in the last descriptors to form a ring. */
|
|
|
|
xFECTxDescriptors[ fecNUM_FEC_TX_BUFFERS - 1 ].status |= TX_BD_W;
|
|
|
|
xFECRxDescriptors[ configNUM_FEC_RX_BUFFERS - 1 ].status |= RX_BD_W;
|
|
|
|
|
|
|
|
uxNextRxBuffer = 0;
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
void vFECInit( void )
|
|
|
|
{
|
|
|
|
unsigned portSHORT usData;
|
|
|
|
struct uip_eth_addr xAddr;
|
|
|
|
unsigned portBASE_TYPE ux;
|
|
|
|
|
|
|
|
/* The MAC address is set at the foot of FreeRTOSConfig.h. */
|
|
|
|
const unsigned portCHAR ucMACAddress[6] =
|
|
|
|
{
|
|
|
|
configMAC_0, configMAC_1,configMAC_2, configMAC_3, configMAC_4, configMAC_5
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Create the semaphore used by the ISR to wake the uIP task. */
|
|
|
|
vSemaphoreCreateBinary( xFECSemaphore );
|
|
|
|
|
|
|
|
/* Create the semaphore used to unblock any tasks that might be waiting
|
|
|
|
for a Tx descriptor. */
|
|
|
|
vSemaphoreCreateBinary( xTxSemaphore );
|
|
|
|
|
|
|
|
/* Initialise all the buffers and descriptors used by the DMA. */
|
|
|
|
prvInitialiseFECBuffers();
|
|
|
|
|
|
|
|
for( usData = 0; usData < 6; usData++ )
|
|
|
|
{
|
|
|
|
xAddr.addr[ usData ] = ucMACAddress[ usData ];
|
|
|
|
}
|
|
|
|
uip_setethaddr( xAddr );
|
|
|
|
|
|
|
|
/* Set the Reset bit and clear the Enable bit */
|
|
|
|
MCF_FEC_ECR = MCF_FEC_ECR_RESET;
|
|
|
|
|
|
|
|
/* Wait at least 8 clock cycles */
|
|
|
|
for( usData = 0; usData < 10; usData++ )
|
|
|
|
{
|
|
|
|
asm( "NOP" );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set MII speed to 2.5MHz. */
|
|
|
|
MCF_FEC_MSCR = MCF_FEC_MSCR_MII_SPEED( ( ( ( configCPU_CLOCK_HZ / 1000000 ) / 5 ) + 1 ) );
|
|
|
|
|
|
|
|
/* Initialize PLDPAR to enable Ethernet LEDs. */
|
|
|
|
MCF_GPIO_PLDPAR = MCF_GPIO_PLDPAR_ACTLED_ACTLED | MCF_GPIO_PLDPAR_LINKLED_LINKLED | MCF_GPIO_PLDPAR_SPDLED_SPDLED
|
|
|
|
| MCF_GPIO_PLDPAR_DUPLED_DUPLED | MCF_GPIO_PLDPAR_COLLED_COLLED | MCF_GPIO_PLDPAR_RXLED_RXLED
|
|
|
|
| MCF_GPIO_PLDPAR_TXLED_TXLED;
|
|
|
|
|
|
|
|
/* Initialize Port TA to enable Axcel control. */
|
|
|
|
MCF_GPIO_PTAPAR = 0x00;
|
|
|
|
MCF_GPIO_DDRTA = 0x0F;
|
|
|
|
MCF_GPIO_PORTTA = 0x04;
|
|
|
|
|
|
|
|
/* Set phy address to zero. */
|
|
|
|
MCF_EPHY_EPHYCTL1 = MCF_EPHY_EPHYCTL1_PHYADD( 0 );
|
|
|
|
|
|
|
|
/* Enable EPHY module with PHY clocks disabled. Do not turn on PHY clocks
|
|
|
|
until both FEC and EPHY are completely setup (see Below). */
|
|
|
|
MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0_DIS100 | MCF_EPHY_EPHYCTL0_DIS10);
|
|
|
|
|
|
|
|
/* Enable auto_neg at start-up */
|
|
|
|
MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0 & (MCF_EPHY_EPHYCTL0_ANDIS));
|
|
|
|
|
|
|
|
/* Enable EPHY module. */
|
|
|
|
MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0_EPHYEN | MCF_EPHY_EPHYCTL0);
|
|
|
|
|
|
|
|
/* Let PHY PLLs be determined by PHY. */
|
|
|
|
MCF_EPHY_EPHYCTL0 = (uint8)(MCF_EPHY_EPHYCTL0 & ~(MCF_EPHY_EPHYCTL0_DIS100 | MCF_EPHY_EPHYCTL0_DIS10));
|
|
|
|
|
|
|
|
/* Settle. */
|
|
|
|
vTaskDelay( fecLINK_DELAY );
|
|
|
|
|
|
|
|
/* Can we talk to the PHY? */
|
|
|
|
do
|
|
|
|
{
|
|
|
|
vTaskDelay( fecLINK_DELAY );
|
|
|
|
usData = 0;
|
|
|
|
fec_mii_read( configPHY_ADDRESS, PHY_PHYIDR1, &usData );
|
|
|
|
|
|
|
|
} while( usData == 0xffff );
|
|
|
|
|
|
|
|
do
|
|
|
|
{
|
|
|
|
/* Start auto negotiate. */
|
|
|
|
fec_mii_write( configPHY_ADDRESS, PHY_BMCR, ( PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE ) );
|
|
|
|
|
|
|
|
/* Wait for auto negotiate to complete. */
|
|
|
|
do
|
|
|
|
{
|
|
|
|
ux++;
|
|
|
|
if( ux > 10 )
|
|
|
|
{
|
|
|
|
/* Hardware bug workaround! Force 100Mbps half duplex. */
|
|
|
|
while( !fec_mii_read( configPHY_ADDRESS, 0, &usData ) ){};
|
|
|
|
usData &= ~0x2000; /* 10Mbps */
|
|
|
|
usData &= ~0x0100; /* Half Duplex */
|
|
|
|
usData &= ~0x1000; /* Manual Mode */
|
|
|
|
while( !fec_mii_write( configPHY_ADDRESS, 0, usData ) ){};
|
|
|
|
while( !fec_mii_write( configPHY_ADDRESS, 0, (usData|0x0200) )){}; /* Force re-negotiate */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
vTaskDelay( fecLINK_DELAY );
|
|
|
|
fec_mii_read( configPHY_ADDRESS, PHY_BMSR, &usData );
|
|
|
|
|
|
|
|
} while( !( usData & PHY_BMSR_AN_COMPLETE ) );
|
|
|
|
|
|
|
|
} while( 0 ); //while( !( usData & PHY_BMSR_LINK ) );
|
|
|
|
|
|
|
|
/* When we get here we have a link - find out what has been negotiated. */
|
|
|
|
fec_mii_read( configPHY_ADDRESS, PHY_ANLPAR, &usData );
|
|
|
|
|
|
|
|
if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_100BTX ) )
|
|
|
|
{
|
|
|
|
/* Speed is 100. */
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Speed is 10. */
|
|
|
|
}
|
|
|
|
|
|
|
|
if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_10BTX_FDX ) )
|
|
|
|
{
|
|
|
|
MCF_FEC_RCR &= (unsigned portLONG)~MCF_FEC_RCR_DRT;
|
|
|
|
MCF_FEC_TCR |= MCF_FEC_TCR_FDEN;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
MCF_FEC_RCR |= MCF_FEC_RCR_DRT;
|
|
|
|
MCF_FEC_TCR &= (unsigned portLONG)~MCF_FEC_TCR_FDEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Clear the Individual and Group Address Hash registers */
|
|
|
|
MCF_FEC_IALR = 0;
|
|
|
|
MCF_FEC_IAUR = 0;
|
|
|
|
MCF_FEC_GALR = 0;
|
|
|
|
MCF_FEC_GAUR = 0;
|
|
|
|
|
|
|
|
/* Set the Physical Address for the selected FEC */
|
|
|
|
fec_set_address( ucMACAddress );
|
|
|
|
|
|
|
|
/* Set Rx Buffer Size */
|
|
|
|
MCF_FEC_EMRBR = (unsigned portSHORT)configFEC_BUFFER_SIZE;
|
|
|
|
|
|
|
|
/* Point to the start of the circular Rx buffer descriptor queue */
|
|
|
|
MCF_FEC_ERDSR = ( volatile unsigned portLONG ) &( xFECRxDescriptors[ 0 ] );
|
|
|
|
|
|
|
|
/* Point to the start of the circular Tx buffer descriptor queue */
|
|
|
|
MCF_FEC_ETSDR = ( volatile unsigned portLONG ) &( xFECTxDescriptors[ 0 ] );
|
|
|
|
|
|
|
|
/* Mask all FEC interrupts */
|
|
|
|
MCF_FEC_EIMR = ( unsigned portLONG ) -1;
|
|
|
|
|
|
|
|
/* Clear all FEC interrupt events */
|
|
|
|
MCF_FEC_EIR = ( unsigned portLONG ) -1;
|
|
|
|
|
|
|
|
/* Initialize the Receive Control Register */
|
|
|
|
MCF_FEC_RCR = MCF_FEC_RCR_MAX_FL(ETH_MAX_FRM) | MCF_FEC_RCR_FCE;
|
|
|
|
|
|
|
|
MCF_FEC_RCR |= MCF_FEC_RCR_MII_MODE;
|
|
|
|
|
|
|
|
#if( configUSE_PROMISCUOUS_MODE == 1 )
|
|
|
|
{
|
|
|
|
MCF_FEC_RCR |= MCF_FEC_RCR_PROM;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
prvEnableFECInterrupts();
|
|
|
|
|
|
|
|
/* Finally... enable. */
|
|
|
|
MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
|
|
|
|
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
static void prvEnableFECInterrupts( void )
|
|
|
|
{
|
|
|
|
const unsigned portBASE_TYPE uxFirstFECVector = 23, uxLastFECVector = 35;
|
|
|
|
unsigned portBASE_TYPE ux;
|
|
|
|
|
|
|
|
#if configFEC_INTERRUPT_PRIORITY > configMAX_SYSCALL_INTERRUPT_PRIORITY
|
|
|
|
#error configFEC_INTERRUPT_PRIORITY must be less than or equal to configMAX_SYSCALL_INTERRUPT_PRIORITY
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Set the priority of each of the FEC interrupts. */
|
|
|
|
for( ux = uxFirstFECVector; ux <= uxLastFECVector; ux++ )
|
|
|
|
{
|
|
|
|
MCF_INTC0_ICR( ux ) = MCF_INTC_ICR_IL( configFEC_INTERRUPT_PRIORITY );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Enable the FEC interrupts in the mask register */
|
|
|
|
MCF_INTC0_IMRH &= ~( MCF_INTC_IMRH_INT_MASK33 | MCF_INTC_IMRH_INT_MASK34 | MCF_INTC_IMRH_INT_MASK35 );
|
|
|
|
MCF_INTC0_IMRL &= ~( MCF_INTC_IMRL_INT_MASK25 | MCF_INTC_IMRL_INT_MASK26 | MCF_INTC_IMRL_INT_MASK27
|
|
|
|
| MCF_INTC_IMRL_INT_MASK28 | MCF_INTC_IMRL_INT_MASK29 | MCF_INTC_IMRL_INT_MASK30
|
|
|
|
| MCF_INTC_IMRL_INT_MASK31 | MCF_INTC_IMRL_INT_MASK23 | MCF_INTC_IMRL_INT_MASK24
|
|
|
|
| MCF_INTC_IMRL_MASKALL );
|
|
|
|
|
|
|
|
/* Clear any pending FEC interrupt events */
|
|
|
|
MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;
|
|
|
|
|
|
|
|
/* Unmask all FEC interrupts */
|
|
|
|
MCF_FEC_EIMR = MCF_FEC_EIMR_UNMASK_ALL;
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
static void prvResetFEC( portBASE_TYPE xCalledFromISR )
|
|
|
|
{
|
|
|
|
portBASE_TYPE x;
|
|
|
|
|
|
|
|
/* A critical section is used unless this function is being called from
|
|
|
|
an ISR. */
|
|
|
|
if( xCalledFromISR == pdFALSE )
|
|
|
|
{
|
|
|
|
taskENTER_CRITICAL();
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
/* Reset all buffers and descriptors. */
|
|
|
|
prvInitialiseFECBuffers();
|
|
|
|
|
|
|
|
/* Set the Reset bit and clear the Enable bit */
|
|
|
|
MCF_FEC_ECR = MCF_FEC_ECR_RESET;
|
|
|
|
|
|
|
|
/* Wait at least 8 clock cycles */
|
|
|
|
for( x = 0; x < 10; x++ )
|
|
|
|
{
|
|
|
|
asm( "NOP" );
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Re-enable. */
|
|
|
|
MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
|
|
|
|
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( xCalledFromISR == pdFALSE )
|
|
|
|
{
|
|
|
|
taskEXIT_CRITICAL();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
unsigned short usFECGetRxedData( void )
|
|
|
|
{
|
|
|
|
unsigned portSHORT usLen;
|
|
|
|
|
|
|
|
/* Obtain the size of the packet and put it into the "len" variable. */
|
|
|
|
usLen = xFECRxDescriptors[ uxNextRxBuffer ].length;
|
|
|
|
|
|
|
|
if( ( usLen != 0 ) && ( ( xFECRxDescriptors[ uxNextRxBuffer ].status & RX_BD_E ) == 0 ) )
|
|
|
|
{
|
|
|
|
uip_buf = xFECRxDescriptors[ uxNextRxBuffer ].data;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
usLen = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return usLen;
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
void vFECRxProcessingCompleted( void )
|
|
|
|
{
|
|
|
|
/* Free the descriptor as the buffer it points to is no longer in use. */
|
|
|
|
xFECRxDescriptors[ uxNextRxBuffer ].status |= RX_BD_E;
|
|
|
|
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
|
|
|
|
uxNextRxBuffer++;
|
|
|
|
if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
|
|
|
|
{
|
|
|
|
uxNextRxBuffer = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
void vFECSendData( void )
|
|
|
|
{
|
|
|
|
/* Ensure no Tx frames are outstanding. */
|
|
|
|
if( xSemaphoreTake( xTxSemaphore, fecMAX_WAIT_FOR_TX_BUFFER ) == pdPASS )
|
|
|
|
{
|
|
|
|
/* Get a DMA buffer into which we can write the data to send. */
|
|
|
|
if( xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].status & TX_BD_R )
|
|
|
|
{
|
|
|
|
/*** ERROR didn't expect this. Sledge hammer error handling. ***/
|
|
|
|
prvResetFEC( pdFALSE );
|
|
|
|
|
|
|
|
/* Make sure we leave the semaphore in the expected state as nothing
|
|
|
|
is being transmitted this will not happen in the Tx ISR. */
|
|
|
|
xSemaphoreGive( xTxSemaphore );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Setup the buffer descriptor for transmission. The data being
|
|
|
|
sent is actually stored in one of the Rx descriptor buffers,
|
|
|
|
pointed to by uip_buf. */
|
|
|
|
xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].length = uip_len;
|
|
|
|
xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].status |= ( TX_BD_R | TX_BD_L );
|
|
|
|
xFECTxDescriptors[ fecTX_BUFFER_TO_USE ].data = uip_buf;
|
|
|
|
|
|
|
|
/* Remember which Rx descriptor owns the buffer we are sending. */
|
|
|
|
uxIndexToBufferOwner = uxNextRxBuffer;
|
|
|
|
|
|
|
|
/* We have finished with this Rx descriptor now. */
|
|
|
|
uxNextRxBuffer++;
|
|
|
|
if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
|
|
|
|
{
|
|
|
|
uxNextRxBuffer = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Continue the Tx DMA (in case it was waiting for a new TxBD) */
|
|
|
|
MCF_FEC_TDAR = MCF_FEC_TDAR_X_DES_ACTIVE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Gave up waiting. Free the buffer back to the DMA. */
|
|
|
|
vFECRxProcessingCompleted();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
void vFEC_ISR( void )
|
|
|
|
{
|
|
|
|
unsigned portLONG ulEvent;
|
|
|
|
portBASE_TYPE xHighPriorityTaskWoken = pdFALSE;
|
|
|
|
|
|
|
|
/* This handler is called in response to any of the many separate FEC
|
|
|
|
interrupt. */
|
|
|
|
|
|
|
|
/* Find the cause of the interrupt, then clear the interrupt. */
|
|
|
|
ulEvent = MCF_FEC_EIR & MCF_FEC_EIMR;
|
|
|
|
MCF_FEC_EIR = ulEvent;
|
|
|
|
|
|
|
|
if( ( ulEvent & MCF_FEC_EIR_RXB ) || ( ulEvent & MCF_FEC_EIR_RXF ) )
|
|
|
|
{
|
|
|
|
/* A packet has been received. Wake the handler task. */
|
|
|
|
xSemaphoreGiveFromISR( xFECSemaphore, &xHighPriorityTaskWoken );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( ulEvent & ( MCF_FEC_EIR_UN | MCF_FEC_EIR_RL | MCF_FEC_EIR_LC | MCF_FEC_EIR_EBERR | MCF_FEC_EIR_BABT | MCF_FEC_EIR_BABR | MCF_FEC_EIR_HBERR ) )
|
|
|
|
{
|
|
|
|
/* Sledge hammer error handling. */
|
|
|
|
prvResetFEC( pdTRUE );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( ( ulEvent & MCF_FEC_EIR_TXF ) || ( ulEvent & MCF_FEC_EIR_TXB ) )
|
|
|
|
{
|
|
|
|
/* The buffer being sent is pointed to by an Rx descriptor, now the
|
|
|
|
buffer has been sent we can mark the Rx descriptor as free again. */
|
|
|
|
xFECRxDescriptors[ uxIndexToBufferOwner ].status |= RX_BD_E;
|
|
|
|
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
|
|
|
|
xSemaphoreGiveFromISR( xTxSemaphore, &xHighPriorityTaskWoken );
|
|
|
|
}
|
|
|
|
|
|
|
|
portEND_SWITCHING_ISR( xHighPriorityTaskWoken );
|
|
|
|
}
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
|
|
|
|
/* Install the many different interrupt vectors, all of which call the same
|
|
|
|
handler function. */
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_87( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_88( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_89( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_90( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_91( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_92( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_93( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_94( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_95( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_96( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_97( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_98( void ) { vFEC_ISR(); }
|
|
|
|
void __attribute__ ((interrupt)) __cs3_isr_interrupt_99( void ) { vFEC_ISR(); }
|
|
|
|
|
|
|
|
|