You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

148 lines
4.5 KiB
Python

import argparse
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "7"
import torch
from torchvision import utils
from model import Generator
from tqdm import tqdm
import json
import glob
from PIL import Image
def make_image(tensor):
return (
tensor.detach()
.clamp_(min=-1, max=1)
.add(1)
.div_(2)
.mul(255)
.type(torch.uint8)
.permute(0, 2, 3, 1)
.to("cpu")
.numpy()
)
def generate(args, g_ema, device, mean_latent, model_name, g_ema_ffhq):
outdir = args.save_dir
# print(outdir)
# outdir = os.path.join(args.output, args.name, 'eval','toons_paired_0512')
if not os.path.exists(outdir):
os.makedirs(outdir)
with torch.no_grad():
g_ema.eval()
for i in tqdm(range(args.pics)):
sample_z = torch.randn(args.sample, args.latent, device=device)
res, _ = g_ema(
[sample_z], truncation=args.truncation, truncation_latent=mean_latent
)
if args.form == "pair":
sample_face, _ = g_ema_ffhq(
[sample_z], truncation=args.truncation, truncation_latent=mean_latent
)
res = torch.cat([sample_face, res], 3)
outpath = os.path.join(outdir, str(i).zfill(6)+'.png')
utils.save_image(
res,
outpath,
# f"sample/{str(i).zfill(6)}.png",
nrow=1,
normalize=True,
range=(-1, 1),
)
# print('save %s'% outpath)
if __name__ == "__main__":
device = "cuda"
parser = argparse.ArgumentParser(description="Generate samples from the generator")
parser.add_argument('--config', type=str, default='config/conf_server_test_blend_shell.json')
parser.add_argument('--name', type=str, default='')
parser.add_argument('--save_dir', type=str, default='')
parser.add_argument('--form', type=str, default='single')
parser.add_argument(
"--size", type=int, default=256, help="output image size of the generator"
)
parser.add_argument(
"--sample",
type=int,
default=1,
help="number of samples to be generated for each image",
)
parser.add_argument(
"--pics", type=int, default=20, help="number of images to be generated"
)
parser.add_argument("--truncation", type=float, default=1, help="truncation ratio")
parser.add_argument(
"--truncation_mean",
type=int,
default=4096,
help="number of vectors to calculate mean for the truncation",
)
parser.add_argument(
"--ckpt",
type=str,
default="stylegan2-ffhq-config-f.pt",
help="path to the model checkpoint",
)
parser.add_argument(
"--channel_multiplier",
type=int,
default=2,
help="channel multiplier of the generator. config-f = 2, else = 1",
)
args = parser.parse_args()
# from config updata paras
opt = vars(args)
with open(args.config) as f:
config = json.load(f)['parameters']
for key, value in config.items():
opt[key] = value
# args.ckpt = 'face_generation/experiment_stylegan/'+args.name+'/models_blend/G_blend_001000_4.pt'
args.ckpt = 'face_generation/experiment_stylegan/'+args.name+'/models_blend/G_blend_'
args.ckpt = glob.glob(args.ckpt+'*')[0]
args.latent = 512
args.n_mlp = 8
g_ema = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
checkpoint = torch.load(args.ckpt)
# g_ema.load_state_dict(checkpoint["g_ema"])
g_ema.load_state_dict(checkpoint["g_ema"], strict=False)
## add G_ffhq
g_ema_ffhq = Generator(
args.size, args.latent, args.n_mlp, channel_multiplier=args.channel_multiplier
).to(device)
checkpoint_ffhq = torch.load(args.ffhq_ckpt)
g_ema_ffhq.load_state_dict(checkpoint_ffhq["g_ema"], strict=False)
if args.truncation < 1:
with torch.no_grad():
mean_latent = g_ema.mean_latent(args.truncation_mean)
else:
mean_latent = None
model_name = os.path.basename(args.ckpt)
print('save generated samples to %s'% os.path.join(args.output, args.name, 'eval_blend', model_name))
generate(args, g_ema, device, mean_latent, model_name, g_ema_ffhq)
# generate_style_mix(args, g_ema, device, mean_latent, model_name, g_ema_ffhq)
# latent_path = 'test2.pt'
# generate_from_latent(args, g_ema, device, mean_latent, latent_path)