You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

117 lines
3.3 KiB
Python

import time
import cv2
import numpy as np
import tensorflow as tf
from .config import config as cfg
if tf.__version__ >= '2.0':
tf = tf.compat.v1
class FaceDetector:
def __init__(self, dir):
self.model_path = dir + '/detector.pb'
self.thres = cfg.DETECT.thres
self.input_shape = cfg.DETECT.input_shape
self._graph = tf.Graph()
with self._graph.as_default():
self._graph, self._sess = self.init_model(self.model_path)
self.input_image = tf.get_default_graph().get_tensor_by_name(
'tower_0/images:0')
self.training = tf.get_default_graph().get_tensor_by_name(
'training_flag:0')
self.output_ops = [
tf.get_default_graph().get_tensor_by_name('tower_0/boxes:0'),
tf.get_default_graph().get_tensor_by_name('tower_0/scores:0'),
tf.get_default_graph().get_tensor_by_name(
'tower_0/num_detections:0'),
]
def __call__(self, image):
image, scale_x, scale_y = self.preprocess(
image,
target_width=self.input_shape[1],
target_height=self.input_shape[0])
image = np.expand_dims(image, 0)
boxes, scores, num_boxes = self._sess.run(
self.output_ops,
feed_dict={
self.input_image: image,
self.training: False
})
num_boxes = num_boxes[0]
boxes = boxes[0][:num_boxes]
scores = scores[0][:num_boxes]
to_keep = scores > self.thres
boxes = boxes[to_keep]
scores = scores[to_keep]
y1 = self.input_shape[0] / scale_y
x1 = self.input_shape[1] / scale_x
y2 = self.input_shape[0] / scale_y
x2 = self.input_shape[1] / scale_x
scaler = np.array([y1, x1, y2, x2], dtype='float32')
boxes = boxes * scaler
scores = np.expand_dims(scores, 0).reshape([-1, 1])
for i in range(boxes.shape[0]):
boxes[i] = np.array(
[boxes[i][1], boxes[i][0], boxes[i][3], boxes[i][2]])
return np.concatenate([boxes, scores], axis=1)
def preprocess(self, image, target_height, target_width, label=None):
h, w, c = image.shape
bimage = np.zeros(
shape=[target_height, target_width, c],
dtype=image.dtype) + np.array(
cfg.DATA.pixel_means, dtype=image.dtype)
long_side = max(h, w)
scale_x = scale_y = target_height / long_side
image = cv2.resize(image, None, fx=scale_x, fy=scale_y)
h_, w_, _ = image.shape
bimage[:h_, :w_, :] = image
return bimage, scale_x, scale_y
def init_model(self, *args):
pb_path = args[0]
def init_pb(model_path):
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.2
compute_graph = tf.Graph()
compute_graph.as_default()
sess = tf.Session(config=config)
with tf.gfile.GFile(model_path, 'rb') as fid:
graph_def = tf.GraphDef()
graph_def.ParseFromString(fid.read())
tf.import_graph_def(graph_def, name='')
return (compute_graph, sess)
model = init_pb(pb_path)
graph = model[0]
sess = model[1]
return graph, sess