import torch from torch import nn from .model_irse import Backbone class IDLoss(nn.Module): def __init__(self): super(IDLoss, self).__init__() print('Loading ResNet ArcFace') model_paths = '/data/vdb/qingyao/cartoon/mycode/pretrained_models/model_ir_se50.pth' self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se') self.facenet.load_state_dict(torch.load(model_paths)) self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112)) self.facenet.eval() def extract_feats(self, x): x = x[:, :, 35:223, 32:220] # Crop interesting region x = self.face_pool(x) x_feats = self.facenet(x) return x_feats def forward(self, y_hat, x): n_samples = x.shape[0] x_feats = self.extract_feats(x) y_hat_feats = self.extract_feats(y_hat) loss = 0 sim_improvement = 0 id_logs = [] count = 0 for i in range(n_samples): diff_input = y_hat_feats[i].dot(x_feats[i]) id_logs.append({ 'diff_input': float(diff_input) }) # loss += 1 - diff_target # modify loss += 1 - diff_input count += 1 return loss / count