From 1dc1eabf998846bc8d942efad01d41becdc6d720 Mon Sep 17 00:00:00 2001 From: menyifang Date: Tue, 14 Mar 2023 21:50:42 +0800 Subject: [PATCH] update --- README.md | 177 +----------------------------------------------------- 1 file changed, 3 insertions(+), 174 deletions(-) diff --git a/README.md b/README.md index 031b496..54fbfac 100644 --- a/README.md +++ b/README.md @@ -108,176 +108,6 @@ python run_vid.py --style anime ``` -## Training - -### Data preparation -``` -face_photo: face dataset such as [FFHQ](https://github.com/NVlabs/ffhq-dataset) or other collected real faces. -face_cartoon: 100-300 cartoon face images in a specific style, which can be self-collected or synthsized with generative models. -``` -Due to the copyrighe issues, we can not provide collected cartoon exemplar for training. You can produce cartoon exemplars with the style-finetuned Stable-Diffusion (SD) models, which can be downloaded from modelscope or huggingface hubs. - -The effects of some style-finetune SD models are as follows: - -| [](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_design/summary) | [](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_watercolor) | [](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_illustration/summary)| [](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_clipart/summary)| [](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_flat/summary)| -|:--:|:--:|:--:|:--:|:--:| -| [design](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_design/summary) | [watercolor](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_watercolor/summary) | [illustration](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_illustration/summary) | [clipart](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_clipart/summary) | [flat](https://modelscope.cn/models/damo/cv_cartoon_stable_diffusion_flat/summary) | - -- Generate stylized data, style choice [option: clipart, design, illustration, watercolor, flat] -```bash -python generate_data.py --style clipart -``` - -- preprocess - -extract aligned faces from raw style images: -```bash -python extract_align_faces.py --src_dir 'data/raw_style_data' -``` - -- train content calibration network - -install environment required by (stylegan2-pytorch)[https://github.com/rosinality/stylegan2-pytorch] -```bash -cd source/stylegan2 -python prepare_data.py '../../data/face_cartoon' --size 256 --out '../../data/stylegan2/traindata' -CUDA_VISIBLE_DEVICES=0 python train_condition.py --name 'ffhq_style_s256' --path '../../data/stylegan2/traindata' --config config/conf_server_train_condition_shell.json -``` - -after training, generated content calibrated samples via: -```bash -python style_blend.py --name 'ffhq_style_s256' -python generate_blendmodel.py --name 'ffhq_style_s256' --save_dir '../../data/face_cartoon/syn_style_faces' -``` - -- geometry calibration - -run geometry calibration for both photo and cartoon: -```bash -cd source -python image_flip_agument_parallel.py --data_dir '../data/face_cartoon' -python image_scale_agument_parallel_flat.py --data_dir '../data/face_cartoon' -python image_rotation_agument_parallel_flat.py --data_dir '../data/face_cartoon' -``` - -- train texture translator - -The dataset structure is recommended as: -``` -+—data -| +—face_photo -| +—face_cartoon -``` - -resume training from the pretrai# DCT-Net: Domain-Calibrated Translation for Portrait Stylization - -### [Project page](https://menyifang.github.io/projects/DCTNet/DCTNet.html) | [Video](https://www.youtube.com/watch?v=Y8BrfOjXYQM) | [Paper](https://arxiv.org/abs/2207.02426) - -Official implementation of DCT-Net for Full-body Portrait Stylization. - - -> [**DCT-Net: Domain-Calibrated Translation for Portrait Stylization**](arxiv_url_coming_soon), -> [Yifang Men](https://menyifang.github.io/)1, Yuan Yao1, Miaomiao Cui1, [Zhouhui Lian](https://www.icst.pku.edu.cn/zlian/)2, Xuansong Xie1, -> _1[DAMO Academy, Alibaba Group](https://damo.alibaba.com), Beijing, China_ -> _2[Wangxuan Institute of Computer Technology, Peking University](https://www.icst.pku.edu.cn/), China_ -> In: SIGGRAPH 2022 (**TOG**) -> *[arXiv preprint](https://arxiv.org/abs/2207.02426)* - -google colab logo -[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SIGGRAPH2022/DCT-Net) - - -## Demo -![demo](assets/demo.gif) - - -## News -(2023-02-20) Two new style pre-trained models (design, illustration) trained with combined DCT-Net and Stable-Diffusion are provided. The training guidance will be released soon. - -(2022-10-09) The multi-style pre-trained models (3d, handdrawn, sketch, artstyle) and usage are available now. - -(2022-08-08) The pertained model and infer code of 'anime' style is available now. More styles coming soon. - -(2022-08-08) cartoon function can be directly call from pythonSDK. - -(2022-07-07) The paper is available now at arxiv(https://arxiv.org/abs/2207.02426). - - -## Web Demo -- Integrated into [Colab notebook](https://colab.research.google.com/github/menyifang/DCT-Net/blob/main/notebooks/inference.ipynb). Try out the colab demo.google colab logo - -- Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/SIGGRAPH2022/DCT-Net) - -- [Chinese version] Integrated into [ModelScope](https://modelscope.cn/#/models). Try out the Web Demo [![ModelScope Spaces]( -https://img.shields.io/badge/ModelScope-Spaces-blue)](https://modelscope.cn/#/models/damo/cv_unet_person-image-cartoon_compound-models/summary) - -## Requirements -* python 3 -* tensorflow (>=1.14) -* easydict -* numpy -* both CPU/GPU are supported - - -## Quick Start -google colab logo - - -```bash -git clone https://github.com/menyifang/DCT-Net.git -cd DCT-Net - -``` - -### Installation -```bash -conda create -n dctnet python=3.7 -conda activate dctnet -pip install numpy==1.18.5 -pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html -pip install --upgrade tensorflow-gpu==1.15 # GPU support, use tensorflow for CPU only -pip install "modelscope[cv]==1.3.2" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html -pip install "modelscope[multi-modal]==1.3.2" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html -``` - -### Downloads - -| [](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon_compound-models/summary) | [](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-3d_compound-models/summary) | [](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-handdrawn_compound-models/summary)| [](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-sketch_compound-models/summary)| [](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-artstyle_compound-models/summary)| -|:--:|:--:|:--:|:--:|:--:| -| [anime](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon_compound-models/summary) | [3d](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-3d_compound-models/summary) | [handdrawn](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-handdrawn_compound-models/summary) | [sketch](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-sketch_compound-models/summary) | [artstyle](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-artstyle_compound-models/summary) | - -| [](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-sd-design_compound-models/summary) | [](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-sd-illustration_compound-models/summary) | -|:--:|:--:| -| [design](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-sd-design_compound-models/summary) | [illustration](https://modelscope.cn/models/damo/cv_unet_person-image-cartoon-sd-illustration_compound-models/summary) - -Pre-trained models in different styles can be downloaded by -```bash -python download.py -``` - -### Inference - -- from python SDK -```bash -python run_sdk.py -``` - -- from source code -```bash -python run.py -``` - -### Video cartoonization - -![demo_vid](assets/video.gif) - -video can be directly processed as image sequences, style choice [option: anime, 3d, handdrawn, sketch, artstyle, sd-design, sd-illustration] - -```bash -python run_vid.py --style anime -``` - - ## Training google colab logo @@ -308,11 +138,11 @@ python extract_align_faces.py --src_dir 'data/raw_style_data' - train content calibration network -install environment required by (stylegan2-pytorch)[https://github.com/rosinality/stylegan2-pytorch] +install environment required by [stylegan2-pytorch](https://github.com/rosinality/stylegan2-pytorch) ```bash cd source/stylegan2 python prepare_data.py '../../data/face_cartoon' --size 256 --out '../../data/stylegan2/traindata' -CUDA_VISIBLE_DEVICES=0 python train_condition.py --name 'ffhq_style_s256' --path '../../data/stylegan2/traindata' --config config/conf_server_train_condition_shell.json +python train_condition.py --name 'ffhq_style_s256' --path '../../data/stylegan2/traindata' --config config/conf_server_train_condition_shell.json ``` after training, generated content calibrated samples via: @@ -339,8 +169,7 @@ The dataset structure is recommended as: | +—face_photo | +—face_cartoon ``` - -resume training from pretrained model in similar style: +resume training from pretrained model in similar style, style can be chosen from 'anime, 3d, handdrawn, sketch, artstyle, sd-design, sd-illustration'