You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

110 lines
3.9 KiB
Python

# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from codegeex.megatron import get_args
from codegeex.megatron import mpu
from .module import MegatronModule
from .language_model import parallel_lm_logits
from .language_model import get_language_model
from .utils import init_method_normal
from .utils import scaled_init_method_normal
class CodeGeeXModel(MegatronModule):
"""Code Generative Model for Multilingual Program Synthesis."""
def __init__(self, num_tokentypes=0, parallel_output=False):
super(CodeGeeXModel, self).__init__()
args = get_args()
self.parallel_output = parallel_output
self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy
self.language_model, self._language_model_key = get_language_model(
num_tokentypes=num_tokentypes,
add_pooler=False,
init_method=init_method_normal(args.init_method_std),
scaled_init_method=scaled_init_method_normal(args.init_method_std,
args.num_layers))
def forward(
self,
input_ids,
position_ids,
attention_mask,
labels=None,
tokentype_ids=None,
layer_past=None,
get_key_value=False,
forward_method_parallel_output=None,
prompt_length=None,
context_length=None,
):
# Language model.
lm_output = self.language_model(input_ids,
position_ids,
attention_mask,
tokentype_ids=tokentype_ids,
layer_past=layer_past,
get_key_value=get_key_value,
prompt_length=prompt_length,
context_length=context_length)
if get_key_value:
lm_output, presents = lm_output
lm_output = torch.add(lm_output, 0)
# Output.
parallel_output = self.parallel_output
if forward_method_parallel_output is not None:
parallel_output = forward_method_parallel_output
output = parallel_lm_logits(
lm_output,
self.language_model.embedding.word_embeddings.weight,
parallel_output)
if get_key_value:
output = [output, presents]
if labels is None:
return output
else:
if self.fp16_lm_cross_entropy:
assert output.dtype == torch.half
loss = mpu.vocab_parallel_cross_entropy(output, labels)
else:
loss = mpu.vocab_parallel_cross_entropy(output.float(), labels)
return loss
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
keep_vars=False):
state_dict_ = {}
state_dict_[self._language_model_key] \
= self.language_model.state_dict_for_save_checkpoint(
destination, prefix, keep_vars)
return state_dict_
def load_state_dict(self, state_dict, strict=True):
"""Customized load."""
if self._language_model_key in state_dict:
state_dict = state_dict[self._language_model_key]
self.language_model.load_state_dict(state_dict, strict=strict)