mirror of https://github.com/THUDM/CodeGeeX.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
6.8 KiB
Python
187 lines
6.8 KiB
Python
# coding=utf-8
|
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Megatron number of micro-batches calculators."""
|
|
|
|
from abc import ABC
|
|
from abc import abstractmethod
|
|
|
|
|
|
def build_num_microbatches_calculator(args):
|
|
|
|
# Constant num micro-batches.
|
|
if args.rampup_batch_size is None:
|
|
num_microbatches_calculator = ConstantNumMicroBatches(
|
|
args.global_batch_size, args.micro_batch_size, args.data_parallel_size
|
|
)
|
|
if args.rank == 0:
|
|
print(
|
|
"setting number of micro-batches to constant {}".format(
|
|
num_microbatches_calculator.get()
|
|
),
|
|
flush=True,
|
|
)
|
|
|
|
else:
|
|
assert len(args.rampup_batch_size) == 3, (
|
|
"expected the following "
|
|
"format: --rampup-batch-size <start batch size> "
|
|
"<batch size incerement> <ramp-up samples>"
|
|
)
|
|
start_batch_size = int(args.rampup_batch_size[0])
|
|
batch_size_increment = int(args.rampup_batch_size[1])
|
|
ramup_samples = int(args.rampup_batch_size[2])
|
|
if args.rank == 0:
|
|
print(
|
|
"will use batch size rampup starting from global batch "
|
|
"size {} to global batch size {} with batch size increments "
|
|
"{} over {} samples.".format(
|
|
start_batch_size,
|
|
args.global_batch_size,
|
|
batch_size_increment,
|
|
ramup_samples,
|
|
),
|
|
flush=True,
|
|
)
|
|
num_microbatches_calculator = RampupBatchsizeNumMicroBatches(
|
|
start_batch_size,
|
|
batch_size_increment,
|
|
ramup_samples,
|
|
args.global_batch_size,
|
|
args.micro_batch_size,
|
|
args.data_parallel_size,
|
|
)
|
|
|
|
return num_microbatches_calculator
|
|
|
|
|
|
class NumMicroBatchesCalculator(ABC):
|
|
def __init__(self):
|
|
self.num_micro_batches = None
|
|
self.current_global_batch_size = None
|
|
|
|
def get(self):
|
|
return self.num_micro_batches
|
|
|
|
def get_current_global_batch_size(self):
|
|
return self.current_global_batch_size
|
|
|
|
@abstractmethod
|
|
def update(self, consumed_samples, consistency_check):
|
|
pass
|
|
|
|
|
|
class ConstantNumMicroBatches(NumMicroBatchesCalculator):
|
|
def __init__(self, global_batch_size, micro_batch_size, data_parallel_size):
|
|
micro_batch_times_data_parallel = micro_batch_size * data_parallel_size
|
|
assert global_batch_size % micro_batch_times_data_parallel == 0, (
|
|
"global batch size ({}) is not divisible by micro batch size ({})"
|
|
" times data parallel size ({})".format(
|
|
global_batch_size, micro_batch_size, data_parallel_size
|
|
)
|
|
)
|
|
self.num_micro_batches = global_batch_size // micro_batch_times_data_parallel
|
|
assert self.num_micro_batches >= 1
|
|
self.current_global_batch_size = global_batch_size
|
|
|
|
def update(self, consumed_samples, consistency_check):
|
|
pass
|
|
|
|
|
|
class RampupBatchsizeNumMicroBatches(NumMicroBatchesCalculator):
|
|
def __init__(
|
|
self,
|
|
start_batch_size,
|
|
batch_size_increment,
|
|
ramup_samples,
|
|
global_batch_size,
|
|
micro_batch_size,
|
|
data_parallel_size,
|
|
):
|
|
"""Batch size ramp up.
|
|
Over
|
|
steps = (global-batch-size - start-batch-size) / batch_size_increment
|
|
increment batch size from start-batch-size to global-batch-size using
|
|
rampup-samples / steps
|
|
samples.
|
|
Arguments:
|
|
start_batch_size: global batch size to start with
|
|
batch_size_increment: global batch size increments
|
|
ramup_samples: number of samples to use ramp up global
|
|
batch size from `start_batch_size` to `global_batch_size`
|
|
global_batch_size: global batch size post rampup
|
|
micro_batch_size: micro batch size
|
|
data_parallel_size: data parallel size.
|
|
"""
|
|
|
|
self.micro_batch_size = micro_batch_size
|
|
self.data_parallel_size = data_parallel_size
|
|
self.micro_batch_times_data_parallel_size = (
|
|
self.micro_batch_size * self.data_parallel_size
|
|
)
|
|
assert self.micro_batch_times_data_parallel_size > 0
|
|
|
|
assert start_batch_size > 0
|
|
self.start_batch_size = start_batch_size
|
|
|
|
assert global_batch_size > 0
|
|
self.global_batch_size = global_batch_size
|
|
diff_batch_size = self.global_batch_size - self.start_batch_size
|
|
assert diff_batch_size >= 0
|
|
assert batch_size_increment > 0
|
|
self.batch_size_increment = batch_size_increment
|
|
assert diff_batch_size % batch_size_increment == 0, (
|
|
"expected "
|
|
"global batch size interval ({}) to be divisible by global batch "
|
|
"size increment ({})".format(diff_batch_size, batch_size_increment)
|
|
)
|
|
|
|
num_increments = diff_batch_size // self.batch_size_increment
|
|
self.ramup_samples = ramup_samples
|
|
assert self.ramup_samples >= 0
|
|
self.rampup_samples_per_increment = self.ramup_samples / num_increments
|
|
|
|
# Initialize number of microbatches.
|
|
self.update(0, False)
|
|
|
|
def update(self, consumed_samples, consistency_check):
|
|
|
|
if consumed_samples > self.ramup_samples:
|
|
self.current_global_batch_size = self.global_batch_size
|
|
else:
|
|
steps = int(consumed_samples / self.rampup_samples_per_increment)
|
|
self.current_global_batch_size = (
|
|
self.start_batch_size + steps * self.batch_size_increment
|
|
)
|
|
assert self.current_global_batch_size <= self.global_batch_size
|
|
|
|
if consistency_check:
|
|
assert (
|
|
self.current_global_batch_size
|
|
% self.micro_batch_times_data_parallel_size
|
|
== 0
|
|
), (
|
|
"current global "
|
|
"batch size ({}) is not divisible by micro-batch-size ({}) times"
|
|
"data parallel size ({})".format(
|
|
self.current_global_batch_size,
|
|
self.micro_batch_size,
|
|
self.data_parallel_size,
|
|
)
|
|
)
|
|
self.num_micro_batches = (
|
|
self.current_global_batch_size // self.micro_batch_times_data_parallel_size
|
|
)
|