# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Megatron initialization.""" import random import os import time import datetime import numpy as np import torch from codegeex.megatron import get_adlr_autoresume from codegeex.megatron import get_args from codegeex.megatron import get_tensorboard_writer from codegeex.megatron import mpu from codegeex.megatron.global_vars import set_global_variables from codegeex.megatron.mpu import ( set_tensor_model_parallel_rank, set_tensor_model_parallel_world_size, ) try: import wandb except ImportError: wandb = None import deepspeed def initialize_megatron( extra_args_provider=None, args_defaults={}, ignore_unknown_args=False, allow_no_cuda=False, ): """Set global variables, initialize distributed, and set autoresume and random seeds. `allow_no_cuda` should not be set unless using megatron for cpu only data processing. In general this arg should not be set unless you know what you are doing. Returns a function to finalize distributed env initialization (optionally, only when args.lazy_mpu_init == True) """ if not allow_no_cuda: # Make sure cuda is available. assert torch.cuda.is_available(), "Megatron requires CUDA." # Parse args, build tokenizer, and set adlr-autoresume, # tensorboard-writer, and timers. set_global_variables( extra_args_provider=extra_args_provider, args_defaults=args_defaults, ignore_unknown_args=ignore_unknown_args, ) # torch.distributed initialization def finish_mpu_init(): args = get_args() # Pytorch distributed. _initialize_distributed() # Random seeds for reproducibility. if args.rank == 0: print("> setting random seeds to {} ...".format(args.seed)) _set_random_seed(args.seed) args = get_args() if args.lazy_mpu_init: args.use_cpu_initialization = True # delayed initialization of DDP-related stuff # We only set basic DDP globals set_tensor_model_parallel_world_size(args.tensor_model_parallel_size) # and return function for external DDP manager # to call when it has DDP initialized set_tensor_model_parallel_rank(args.rank) return finish_mpu_init else: # Megatron's MPU is the master. Complete initialization right away. finish_mpu_init() # Initialize memory buffers. _initialize_mem_buffs() # Autoresume. _init_autoresume() # No continuation function return None def _compile_dependencies(): args = get_args() # ========================= # Compile dataset C++ code. # ========================= # TODO: move this to ninja if torch.distributed.get_rank() == 0: start_time = time.time() print("> compiling dataset index builder ...") # from megatron.data.dataset_utils import compile_helper # compile_helper() print( ">>> done with dataset index builder. Compilation time: {:.3f} " "seconds".format(time.time() - start_time), flush=True, ) # Custom kernel constraints check. seq_len = args.seq_length attn_batch_size = ( args.num_attention_heads / args.tensor_model_parallel_size ) * args.micro_batch_size # Constraints on sequence length and attn_batch_size to enable warp based # optimization and upper triangular optimization (for causal mask) custom_kernel_constraint = ( seq_len > 16 and seq_len <= 2048 and seq_len % 4 == 0 and attn_batch_size % 4 == 0 ) # Print a warning. if not ( (args.fp16 or args.bf16) and custom_kernel_constraint and args.masked_softmax_fusion ): if args.rank == 0: print( "WARNING: constraints for invoking optimized" " fused softmax kernel are not met. We default" " back to unfused kernel invocations.", flush=True, ) # Always build on rank zero first. if torch.distributed.get_rank() == 0: start_time = time.time() print("> compiling and loading fused kernels ...", flush=True) torch.distributed.barrier() else: torch.distributed.barrier() # Simple barrier to make sure all ranks have passed the # compilation phase successfully before moving on to the # rest of the program. We think this might ensure that # the lock is released. torch.distributed.barrier() if torch.distributed.get_rank() == 0: print( ">>> done with compiling and loading fused kernels. " "Compilation time: {:.3f} seconds".format(time.time() - start_time), flush=True, ) def setup_deepspeed_random_and_activation_checkpointing(args): """Optional DeepSpeed Activation Checkpointing features. Gives access to partition activations, contiguous memory optimizations and cpu checkpointing. Activation checkpoint requires keep track of the random states and setting the random seed for each MP process. Megatron uses mpu.get_cuda_rng_tracker and mpu.model_parallel_cuda_manual_seed for keeping track of the random states and setting the random seeds. Since they are used in places outside of activation checkpointing, we overwrite them to maintain consistency. This must be called before all the calls to mpu.model_parallel_cuda_manual_seed """ num_layers = args.num_layers // args.checkpoint_num_layers num_layers = ( num_layers if args.num_layers % args.checkpoint_num_layers == 0 else num_layers + 1 ) if args.split_transformers: num_layers *= 2 deepspeed.checkpointing.configure( mpu, partition_activations=args.partition_activations, contiguous_checkpointing=args.contigious_checkpointing, num_checkpoints=num_layers, checkpoint_in_cpu=args.checkpoint_in_cpu, synchronize=args.synchronize_each_layer, profile=args.profile_backward, ) mpu.checkpoint = deepspeed.checkpointing.checkpoint mpu.get_cuda_rng_tracker = deepspeed.checkpointing.get_cuda_rng_tracker mpu.model_parallel_cuda_manual_seed = ( deepspeed.checkpointing.model_parallel_cuda_manual_seed ) def _initialize_distributed(): """Initialize torch.distributed and mpu.""" args = get_args() device_count = torch.cuda.device_count() if torch.distributed.is_initialized(): if args.rank == 0: print( "torch distributed is already initialized, " "skipping initialization ...", flush=True, ) args.rank = torch.distributed.get_rank() args.world_size = torch.distributed.get_world_size() else: if args.rank == 0: print("> initializing torch distributed ...", flush=True) # Manually set the device ids. if device_count > 0: device = args.rank % device_count if args.local_rank is not None: assert ( args.local_rank == device ), "expected local-rank to be the same as rank % device-count." else: args.local_rank = device if args.force_device is not None: print( f" > forcefully set the device to {args.force_device}, originally {device}" ) device = args.force_device torch.cuda.set_device(device) # Call the init process init_method = "tcp://" master_ip = os.getenv("MASTER_ADDR", "localhost") master_port = os.getenv("MASTER_PORT", "6000") init_method += master_ip + ":" + master_port print( f" > (rank={args.rank}) initializing process group: " f"world_size={args.world_size} " f"backend={args.distributed_backend} " f"init_method={init_method}", flush=True, ) timeout = datetime.timedelta(minutes=args.dist_timeout) torch.distributed.init_process_group( backend=args.distributed_backend, world_size=args.world_size, rank=args.rank, init_method=init_method, timeout=timeout ) print(f" > (rank={args.rank}) process group initialized") # Set the tensor model-parallel, pipeline model-parallel, and # data-parallel communicators. if device_count > 0: if mpu.model_parallel_is_initialized(): print("model parallel is already initialized") else: mpu.initialize_model_parallel( args.tensor_model_parallel_size, args.pipeline_model_parallel_size, args.virtual_pipeline_model_parallel_size, ) if args.deepspeed and args.deepspeed_activation_checkpointing: setup_deepspeed_random_and_activation_checkpointing(args) def _init_autoresume(): """Set autoresume start time.""" autoresume = get_adlr_autoresume() if autoresume: torch.distributed.barrier() autoresume.init() torch.distributed.barrier() def _set_random_seed(seed_): """Set random seed for reproducability.""" if seed_ is not None and seed_ > 0: # Ensure that different pipeline MP stages get different seeds. seed = seed_ + (100 * mpu.get_pipeline_model_parallel_rank()) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.device_count() > 0: mpu.model_parallel_cuda_manual_seed(seed) else: raise ValueError("Seed ({}) should be a positive integer.".format(seed)) def write_args_to_tensorboard(): """Write arguments to tensorboard.""" args = get_args() writer = get_tensorboard_writer() if writer: for arg in vars(args): writer.add_text(arg, str(getattr(args, arg)), global_step=args.iteration) def initialize_wandb_experiment(): """Initialize wandb experiment.""" assert wandb is not None, "Fail to import wandb" args = get_args() config = args.__dict__ wandb_id_path = os.path.join(args.save, "wandb_id.txt") if os.path.exists(wandb_id_path): wandb_id = open(wandb_id_path, "r").read().strip() else: wandb_id = wandb.util.generate_id() open(wandb_id_path, "w").write(wandb_id) wandb.init(id=wandb_id, project="megatron", config=config, resume="allow") def _initialize_mem_buffs(): """Initialize manually allocated static memory.""" args = get_args() # Initialize memory for checkpointed activations. if args.distribute_checkpointed_activations: mpu.init_checkpointed_activations_memory_buffer()