# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Megatron number of micro-batches calculators.""" from abc import ABC from abc import abstractmethod def build_num_microbatches_calculator(args): # Constant num micro-batches. if args.rampup_batch_size is None: num_microbatches_calculator = ConstantNumMicroBatches( args.global_batch_size, args.micro_batch_size, args.data_parallel_size ) if args.rank == 0: print( "setting number of micro-batches to constant {}".format( num_microbatches_calculator.get() ), flush=True, ) else: assert len(args.rampup_batch_size) == 3, ( "expected the following " "format: --rampup-batch-size " " " ) start_batch_size = int(args.rampup_batch_size[0]) batch_size_increment = int(args.rampup_batch_size[1]) ramup_samples = int(args.rampup_batch_size[2]) if args.rank == 0: print( "will use batch size rampup starting from global batch " "size {} to global batch size {} with batch size increments " "{} over {} samples.".format( start_batch_size, args.global_batch_size, batch_size_increment, ramup_samples, ), flush=True, ) num_microbatches_calculator = RampupBatchsizeNumMicroBatches( start_batch_size, batch_size_increment, ramup_samples, args.global_batch_size, args.micro_batch_size, args.data_parallel_size, ) return num_microbatches_calculator class NumMicroBatchesCalculator(ABC): def __init__(self): self.num_micro_batches = None self.current_global_batch_size = None def get(self): return self.num_micro_batches def get_current_global_batch_size(self): return self.current_global_batch_size @abstractmethod def update(self, consumed_samples, consistency_check): pass class ConstantNumMicroBatches(NumMicroBatchesCalculator): def __init__(self, global_batch_size, micro_batch_size, data_parallel_size): micro_batch_times_data_parallel = micro_batch_size * data_parallel_size assert global_batch_size % micro_batch_times_data_parallel == 0, ( "global batch size ({}) is not divisible by micro batch size ({})" " times data parallel size ({})".format( global_batch_size, micro_batch_size, data_parallel_size ) ) self.num_micro_batches = global_batch_size // micro_batch_times_data_parallel assert self.num_micro_batches >= 1 self.current_global_batch_size = global_batch_size def update(self, consumed_samples, consistency_check): pass class RampupBatchsizeNumMicroBatches(NumMicroBatchesCalculator): def __init__( self, start_batch_size, batch_size_increment, ramup_samples, global_batch_size, micro_batch_size, data_parallel_size, ): """Batch size ramp up. Over steps = (global-batch-size - start-batch-size) / batch_size_increment increment batch size from start-batch-size to global-batch-size using rampup-samples / steps samples. Arguments: start_batch_size: global batch size to start with batch_size_increment: global batch size increments ramup_samples: number of samples to use ramp up global batch size from `start_batch_size` to `global_batch_size` global_batch_size: global batch size post rampup micro_batch_size: micro batch size data_parallel_size: data parallel size. """ self.micro_batch_size = micro_batch_size self.data_parallel_size = data_parallel_size self.micro_batch_times_data_parallel_size = ( self.micro_batch_size * self.data_parallel_size ) assert self.micro_batch_times_data_parallel_size > 0 assert start_batch_size > 0 self.start_batch_size = start_batch_size assert global_batch_size > 0 self.global_batch_size = global_batch_size diff_batch_size = self.global_batch_size - self.start_batch_size assert diff_batch_size >= 0 assert batch_size_increment > 0 self.batch_size_increment = batch_size_increment assert diff_batch_size % batch_size_increment == 0, ( "expected " "global batch size interval ({}) to be divisible by global batch " "size increment ({})".format(diff_batch_size, batch_size_increment) ) num_increments = diff_batch_size // self.batch_size_increment self.ramup_samples = ramup_samples assert self.ramup_samples >= 0 self.rampup_samples_per_increment = self.ramup_samples / num_increments # Initialize number of microbatches. self.update(0, False) def update(self, consumed_samples, consistency_check): if consumed_samples > self.ramup_samples: self.current_global_batch_size = self.global_batch_size else: steps = int(consumed_samples / self.rampup_samples_per_increment) self.current_global_batch_size = ( self.start_batch_size + steps * self.batch_size_increment ) assert self.current_global_batch_size <= self.global_batch_size if consistency_check: assert ( self.current_global_batch_size % self.micro_batch_times_data_parallel_size == 0 ), ( "current global " "batch size ({}) is not divisible by micro-batch-size ({}) times" "data parallel size ({})".format( self.current_global_batch_size, self.micro_batch_size, self.data_parallel_size, ) ) self.num_micro_batches = ( self.current_global_batch_size // self.micro_batch_times_data_parallel_size )