import numpy as np from typing import * from transformers import AutoTokenizer from transformers.models.gpt2 import GPT2TokenizerFast def encode_whitespaces(text: str, start_extra_id: int, max_len: int): """ Encode whitespaces to extra tokens. >>> encode_whitespaces('a\\n b\\n c', 10, 10) 'a\\n<|extratoken_10|>b\\n<|extratoken_11|>c' """ for i in np.arange(max_len, 1, -1): text = text.replace(" " * i, f"<|extratoken_{start_extra_id + i - 2}|>") return text def decode_whitespaces(text: str, start_extra_id: int, max_len: int): """ Decode the whitespace-encoded strings produced by encode_whitespace. >>> text = 'a\\n b\\n c' >>> s, l = 10, 10 >>> text == decode_whitespaces(encode_whitespaces(text, s, l), s, l) True """ for l in range(2, max_len + 1): token_id = start_extra_id - 2 + l token = f'<|extratoken_{token_id}|>' text = text.replace(token, ' ' * l) return text class CodeGeeXTokenizer(object): def __init__( self, tokenizer: GPT2TokenizerFast = None, tokenizer_path: str = "EleutherAI/gpt-j-6B", start_extra_id: int = 10, max_len : int = 10, mode='codegeex-13b', dict_file: str = None, ): self.tokenizer = tokenizer if tokenizer is not None else AutoTokenizer.from_pretrained(tokenizer_path) if mode not in ['codegeex-13b']: raise ValueError(f"Invalid mode {mode}, choose from ['codegeex-13b']") self.start_extra_id = start_extra_id self.max_len = max_len self.mode = mode self.eos_token_id = self.tokenizer.eos_token_id def encode_code(self, code: str): if self.mode == 'codegeex-13b': code = encode_whitespaces(code, self.start_extra_id, self.max_len) input_ids = self.tokenizer(code, is_split_into_words=False, verbose=False).input_ids return input_ids def decode_code(self, input_ids): if self.mode == 'codegeex-13b': text = self.tokenizer.decode(input_ids, skip_special_tokens=False, verbose=False) output_code = decode_whitespaces(text, self.start_extra_id, self.max_len) return output_code