mirror of https://github.com/THUDM/CodeGeeX.git
add oneflow backend for inference
parent
0ccf1eef43
commit
103821cc51
@ -0,0 +1 @@
|
||||
from .codegeex_model import CodeGeeXModel
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,326 @@
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
from typing import *
|
||||
|
||||
import oneflow as torch
|
||||
import oneflow.nn.functional as F
|
||||
from dataclasses import dataclass
|
||||
|
||||
|
||||
def get_ltor_masks_and_position_ids(
|
||||
data,
|
||||
eod_token,
|
||||
reset_position_ids,
|
||||
reset_attention_mask,
|
||||
):
|
||||
"""Build masks and position id for left to right model."""
|
||||
|
||||
# Extract batch size and sequence length.
|
||||
micro_batch_size, seq_length = data.size()
|
||||
|
||||
# Attention mask (lower triangular).
|
||||
if reset_attention_mask:
|
||||
att_mask_batch = micro_batch_size
|
||||
else:
|
||||
att_mask_batch = 1
|
||||
attention_mask = torch.tril(
|
||||
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
||||
).view(att_mask_batch, 1, seq_length, seq_length)
|
||||
|
||||
# Position ids.
|
||||
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
||||
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
||||
# We need to clone as the ids will be modifed based on batch index.
|
||||
if reset_position_ids:
|
||||
position_ids = position_ids.clone()
|
||||
|
||||
if reset_position_ids or reset_attention_mask:
|
||||
# Loop through the batches:
|
||||
for b in range(micro_batch_size):
|
||||
|
||||
# Find indecies where EOD token is.
|
||||
eod_index = position_ids[b, data[b] == eod_token]
|
||||
# Detach indecies from positions if going to modify positions.
|
||||
if reset_position_ids:
|
||||
eod_index = eod_index.clone()
|
||||
|
||||
# Loop through EOD indecies:
|
||||
prev_index = 0
|
||||
for j in range(eod_index.size()[0]):
|
||||
i = eod_index[j]
|
||||
# Mask attention loss.
|
||||
if reset_attention_mask:
|
||||
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
||||
# Reset positions.
|
||||
if reset_position_ids:
|
||||
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
||||
prev_index = i + 1
|
||||
|
||||
# Convert attention mask to binary:
|
||||
attention_mask = attention_mask < 0.5
|
||||
|
||||
return attention_mask, position_ids
|
||||
|
||||
|
||||
def get_batch(
|
||||
context_tokens,
|
||||
micro_batch_size,
|
||||
eod_token,
|
||||
reset_position_ids=False,
|
||||
reset_attention_mask=False,
|
||||
):
|
||||
"""Generate batch from context tokens."""
|
||||
tokens = context_tokens.view(micro_batch_size, -1).contiguous().cuda()
|
||||
# Get the attention mask and postition ids.
|
||||
attention_mask, position_ids = get_ltor_masks_and_position_ids(
|
||||
tokens,
|
||||
eod_token,
|
||||
reset_position_ids,
|
||||
reset_attention_mask,
|
||||
)
|
||||
|
||||
return tokens, attention_mask, position_ids
|
||||
|
||||
|
||||
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
||||
"""This function has been mostly taken from huggingface conversational
|
||||
ai code at
|
||||
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
||||
conversational-ai-with-transfer-learning-2d818ac26313"""
|
||||
|
||||
if top_k > 0:
|
||||
# Remove all tokens with a probability less than the
|
||||
# last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p > 0.0:
|
||||
# Cconvert to 1D
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
||||
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
# Shift the indices to the right to keep also the first token
|
||||
# above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
for i in range(sorted_indices.size(0)):
|
||||
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
||||
logits[i][indices_to_remove] = filter_value
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
def pad_batch(batch, pad_id, seq_length):
|
||||
context_lengths = []
|
||||
for tokens in batch:
|
||||
context_length = len(tokens)
|
||||
if context_length < seq_length:
|
||||
tokens.extend([pad_id] * (seq_length - context_length))
|
||||
context_lengths.append(context_length)
|
||||
return batch, context_lengths
|
||||
|
||||
|
||||
def forward_step(
|
||||
model,
|
||||
tokens,
|
||||
seq_length,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
layer_past=None,
|
||||
get_key_value=None,
|
||||
prompt_length=None,
|
||||
context_length=None,
|
||||
):
|
||||
# Forward pass through the model.
|
||||
output_tensor = model(
|
||||
tokens,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
layer_past=layer_past,
|
||||
get_key_value=get_key_value,
|
||||
prompt_length=prompt_length,
|
||||
context_length=context_length,
|
||||
)
|
||||
|
||||
if get_key_value:
|
||||
output_tensor, layer_past = output_tensor
|
||||
|
||||
if get_key_value:
|
||||
return output_tensor, layer_past
|
||||
|
||||
return output_tensor
|
||||
|
||||
|
||||
def get_token_stream(
|
||||
model,
|
||||
tokenizer,
|
||||
seq_length,
|
||||
out_seq_length,
|
||||
context_tokens,
|
||||
return_scores: bool = False,
|
||||
prompt_length: int = None,
|
||||
micro_batch_size: int = None,
|
||||
bad_ids: List = None,
|
||||
temperature: float = 1.0,
|
||||
topp: float = 1.0,
|
||||
topk: int = 0.0,
|
||||
greedy: bool = False,
|
||||
recompute: bool = False,
|
||||
):
|
||||
context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eos_token_id, seq_length)
|
||||
|
||||
context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
|
||||
context_length_tensor = torch.cuda.LongTensor(context_lengths)
|
||||
context_length = context_length_tensor.min().item()
|
||||
tokens, attention_mask, position_ids = get_batch(
|
||||
context_tokens_tensor,
|
||||
micro_batch_size,
|
||||
tokenizer.eos_token_id,
|
||||
)
|
||||
|
||||
batch_token_iterator = sample_sequence_batch(
|
||||
model,
|
||||
tokenizer,
|
||||
context_tokens_tensor,
|
||||
context_length_tensor,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
seq_length=seq_length,
|
||||
out_seq_length=out_seq_length,
|
||||
return_scores=return_scores,
|
||||
prompt_length=prompt_length,
|
||||
bad_ids=bad_ids,
|
||||
temperature=temperature,
|
||||
topp=topp,
|
||||
topk=topk,
|
||||
greedy=greedy,
|
||||
recompute=recompute,
|
||||
)
|
||||
|
||||
for tokens, lengths in batch_token_iterator:
|
||||
context_length += 1
|
||||
if tokens is not None:
|
||||
yield tokens[:, :context_length], lengths
|
||||
else:
|
||||
yield None, None
|
||||
|
||||
|
||||
def switch(val1, val2, boolean):
|
||||
boolean = boolean.type_as(val1)
|
||||
return (1 - boolean) * val1 + boolean * val2
|
||||
|
||||
|
||||
def sample_sequence_batch(
|
||||
model,
|
||||
tokenizer,
|
||||
context_tokens,
|
||||
context_lengths,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
seq_length,
|
||||
out_seq_length,
|
||||
maxlen=None,
|
||||
return_scores: bool = False,
|
||||
prompt_length: int = None,
|
||||
bad_ids: List = None,
|
||||
temperature: float = 1.0,
|
||||
topp: float = 1.0,
|
||||
topk: int = 0.0,
|
||||
recompute: bool = False,
|
||||
greedy: bool = False,
|
||||
):
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
context_length = context_lengths.min().item()
|
||||
eos_id = tokenizer.eos_token_id
|
||||
|
||||
counter = 0
|
||||
org_context_length = context_length
|
||||
|
||||
layer_past = None
|
||||
batch_size = context_tokens.size(0)
|
||||
is_done = torch.zeros([batch_size]).byte().cuda()
|
||||
tokens = context_tokens
|
||||
if maxlen is None:
|
||||
maxlen = seq_length - 1
|
||||
if maxlen > (org_context_length + out_seq_length):
|
||||
maxlen = org_context_length + out_seq_length
|
||||
|
||||
lengths = torch.ones([batch_size]).long().cuda() * maxlen
|
||||
if return_scores:
|
||||
scores = torch.zeros([batch_size]).float().cuda()
|
||||
|
||||
while context_length <= (maxlen):
|
||||
|
||||
if recompute:
|
||||
logits = model(tokens,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
prompt_length=prompt_length,
|
||||
context_length=context_length,
|
||||
)
|
||||
logits = logits[:, context_length - 1, :]
|
||||
else:
|
||||
if counter == 0:
|
||||
tokens2use = tokens[:, :context_length]
|
||||
positions2use = position_ids[:, :context_length]
|
||||
else:
|
||||
tokens2use = tokens[:, context_length - 1].view(
|
||||
batch_size, -1)
|
||||
positions2use = position_ids[:, context_length - 1].view(
|
||||
batch_size, -1)
|
||||
logits, layer_past = model(tokens2use,
|
||||
positions2use,
|
||||
attention_mask,
|
||||
layer_past=layer_past,
|
||||
get_key_value=True,
|
||||
prompt_length=prompt_length,
|
||||
context_length=context_length,
|
||||
)
|
||||
logits = logits[:, -1].view(batch_size, -1).contiguous()
|
||||
|
||||
if bad_ids is not None:
|
||||
for bad_id in bad_ids:
|
||||
logits[:, bad_id] = -10000
|
||||
if greedy:
|
||||
prev = torch.argmax(logits, dim=-1).view(-1)
|
||||
else:
|
||||
logits = logits.float()
|
||||
if return_scores:
|
||||
orig_log_probs = torch.log_softmax(logits, dim=-1)
|
||||
logits /= temperature
|
||||
logits = top_k_logits(logits, top_k=topk, top_p=topp)
|
||||
log_probs = F.softmax(logits, dim=-1)
|
||||
prev = torch.multinomial(log_probs, num_samples=1).view(-1)
|
||||
|
||||
started = context_lengths <= context_length
|
||||
|
||||
new_tokens = switch(tokens[:, context_length].view(-1), prev, started)
|
||||
|
||||
if not greedy and return_scores:
|
||||
indices = prev.view(-1, 1)
|
||||
new_scores = orig_log_probs.gather(1, indices).view(-1)
|
||||
new_scores = new_scores * started
|
||||
new_scores = new_scores * is_done.bool().logical_not()
|
||||
scores += new_scores
|
||||
|
||||
tokens[:, context_length] = new_tokens
|
||||
done_token = (prev == eos_id).byte() & started.byte()
|
||||
just_finished = (done_token & ~is_done).bool()
|
||||
lengths[just_finished.view(-1)] = context_length
|
||||
is_done = is_done | done_token
|
||||
done = torch.all(is_done)
|
||||
|
||||
if return_scores:
|
||||
yield tokens, (lengths, scores)
|
||||
else:
|
||||
yield tokens, lengths
|
||||
|
||||
context_length += 1
|
||||
counter += 1
|
||||
if done:
|
||||
break
|
@ -0,0 +1,39 @@
|
||||
# This script is used to test the inference of CodeGeeX.
|
||||
|
||||
GPU=$1
|
||||
PROMPT_FILE=$2
|
||||
|
||||
SCRIPT_PATH=$(realpath "$0")
|
||||
SCRIPT_DIR=$(dirname "$SCRIPT_PATH")
|
||||
MAIN_DIR=$(dirname "$SCRIPT_DIR")
|
||||
TOKENIZER_PATH="$MAIN_DIR/codegeex/tokenizer/"
|
||||
|
||||
# import model configuration
|
||||
source "$MAIN_DIR/configs/codegeex_13b.sh"
|
||||
|
||||
# export CUDA settings
|
||||
if [ -z "$GPU" ]; then
|
||||
GPU=0
|
||||
fi
|
||||
|
||||
export CUDA_HOME=/usr/local/cuda-11.1/
|
||||
export CUDA_VISIBLE_DEVICES=$GPU
|
||||
|
||||
if [ -z "$PROMPT_FILE" ]; then
|
||||
PROMPT_FILE=$MAIN_DIR/tests/test_prompt.txt
|
||||
fi
|
||||
|
||||
# remove --greedy if using sampling
|
||||
CMD="python $MAIN_DIR/tests/test_inference_oneflow.py \
|
||||
--prompt-file $PROMPT_FILE \
|
||||
--tokenizer-path $TOKENIZER_PATH \
|
||||
--micro-batch-size 1 \
|
||||
--out-seq-length 1024 \
|
||||
--temperature 0.8 \
|
||||
--top-p 0.95 \
|
||||
--top-k 0 \
|
||||
--greedy \
|
||||
$MODEL_ARGS"
|
||||
|
||||
echo "$CMD"
|
||||
eval "$CMD"
|
Loading…
Reference in New Issue