You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

187 lines
16 KiB
Markdown

<img src="resources/logo/codegeex_logo.png">
<p align="center">
2 years ago
🏠 <a href="https://models.aminer.cn/codegeex/zh-CN" target="_blank">主页</a> | 📖 <a href="https://models.aminer.cn/codegeex/blog/index_zh.html" target="_blank">博客</a> | 🪧 <a href="https://models.aminer.cn/codegeex/zh-CN/playground" target="_blank">示例</a> | 🤖 <a href="https://models.aminer.cn/codegeex/download/request" target="_blank">模型下载</a> | 📃 论文(即将推出!)
</p>
<p align="center">
🛠 <a href="https://marketplace.visualstudio.com/items?itemName=aminer.codegeex" target="_blank">VS Code插件</a> | 📒 <a href="https://github.com/THUDM/CodeGeeX/blob/main/api/README_zh.md" target="_blank">API申请</a> | 👋 欢迎加入 <a href="https://join.slack.com/t/codegeexworkspace/shared_invite/zt-1jxpygozo-GuB40XQPiyfrCflupyLKKw"target="_blank">Slack</a><a href="https://t.me/+IipIayJ32B1jOTg1"target="_blank">Telegram</a><a href="https://wj.qq.com/s2/11274205/a15b/"target="_blank">微信开发者交流群</a> | 🌐 <a href="https://github.com/THUDM/CodeGeeX/blob/main/README.md" target="_blank">English</a>
</p>
2 years ago
2 years ago
![CodeGeeX vscode extension version](https://img.shields.io/visual-studio-marketplace/v/aminer.codegeex?colorA=0B9FE0&colorB=brightgreen)
![CodeGeeX vscode extension last update](https://img.shields.io/visual-studio-marketplace/last-updated/aminer.codegeex?colorA=0B9FE0&colorB=brightgreen)
![CodeGeeX download](https://img.shields.io/visual-studio-marketplace/d/aminer.codegeex?colorA=0B9FE0&colorB=brightgreen)
2 years ago
- [CodeGeeX: 多语言代码生成模型](#codegeex-多语言代码生成模型)
- [新闻](#新闻)
- [使用指南](#使用指南)
- [安装](#安装)
- [模型权重](#模型权重)
- [用GPU进行推理](#用gpu进行推理)
- [VS Code插件使用指南](#vs-code插件使用指南)
- [CodeGeeX: 多语言代码生成模型](#codegeex-多语言代码生成模型-1)
- [国产平台实现与训练](#国产平台实现与训练)
- [HumanEval-X: 多语言代码生成基准](#humaneval-x-多语言代码生成基准)
- [多语言代码生成](#多语言代码生成)
- [跨语言代码翻译](#跨语言代码翻译)
- [许可证](#许可证)
# CodeGeeX: 多语言代码生成模型
CodeGeeX是一个具有130亿参数的多编程语言代码生成预训练模型。CodeGeeX采用华为MindSpore框架实现在鹏城实验室“鹏城云脑II”中的192个节点共1536个国产[昇腾910 AI处理器](https://e.huawei.com/cn/products/servers/ascend)上训练而成。截至2022年6月22日CodeGeeX历时两个月在20多种编程语言的代码语料库>8500亿Token上预训练得到。CodeGeeX有以下特点
* **高精度代码生成**支持生成Python、C++、Java、JavaScript和Go等多种主流编程语言的代码在HumanEval-X代码生成任务上取得47%~60%求解率,较其他开源基线模型有更佳的平均性能。[代码生成示例](https://models.aminer.cn/codegeex/zh-CN)
* **跨语言代码翻译**支持代码片段在不同编程语言间进行自动翻译转换翻译结果正确率高在HumanEval-X代码翻译任务上超越了其它基线模型。[代码翻译示例](https://models.aminer.cn/codegeex/zh-CN/codeTranslator)
* **自动编程插件**CodeGeeX插件现已上架VSCode插件市场完全免费用户可以通过其强大的少样本生成能力自定义代码生成风格和能力更好辅助代码编写。[插件下载](https://marketplace.visualstudio.com/items?itemName=aminer.codegeex)
* **模型跨平台开源**: 所有代码和模型权重开源开放用作研究用途。CodeGeeX同时支持昇腾和英伟达平台可在单张昇腾910或英伟达V100/A100上实现推理。[申请模型权重](https://models.aminer.cn/codegeex/download/request)
**全新多编程语言评测基准HumanEval-X**HumanEval-X是第一个支持功能正确性评测的多语言、多任务的基准包含820个人工编写的高质量代码生成题目、测试用例与参考答案覆盖5种编程语言Python、C++、Java、JavaScript、Go支持代码生成与代码翻译能力的评测。[如何使用](codegeex/benchmark/README_zh.md)
<img src="resources/zh/hx_boxplot_zh.png">
<p align="center"><i>在HumanEval-X代码生成任务上与其它开源基线模型相比CodeGeeX取得了最佳的平均性能。</i> </p>
## 新闻
2 years ago
* **2022-12-04**: 我们开源了量化代码需要更少的显存27GB -> 15GB以及模型并行代码可以运行在多个显存至少8GB的GPUs上
* **2022-09-30**: 我们开源了跨平台代码和模型权重,同时支持昇腾和英伟达平台。
## 使用指南
CodeGeeX最初使用Mindspore框架实现并在昇腾910AI芯片上进行训练。为适配更多平台我们将其转换到[Megatron-LM](https://github.com/NVIDIA/Megatron-LM)框架支持Pytorch+GPU环境。
### 安装
需要Python 3.7+ / CUDA 11+ / PyTorch 1.10+ / DeepSpeed 0.6+,通过以下命令安装 ``codegeex``:
```bash
git clone git@github.com:THUDM/CodeGeeX.git
cd CodeGeeX
pip install -e .
```
### 模型权重
通过[该链接](https://models.aminer.cn/codegeex/download/request)申请权重,您将收到一个包含临时下载链接文件```urls.txt```的邮件。推荐使用[aria2](https://aria2.github.io/)通过以下命令快速下载请保证有足够的硬盘空间存放权重26GB
```bash
aria2c -x 16 -s 16 -j 4 --continue=true -i urls.txt
```
使用以下命令合并得到完整的权重:
```bash
2 years ago
cat codegeex_13b.tar.gz.* > codegeex_13b.tar.gz
tar xvf codegeex_13b.tar.gz
```
### 用GPU进行推理
尝试使用CodeGeeX模型生成第一个程序吧首先在配置文件``configs/codegeex_13b.sh``中写明存放权重的路径。其次,将提示(可以是任意描述或代码片段)写入文件``tests/test_prompt.txt``运行以下脚本即可开始推理需指定GPU序号
```bash
2 years ago
# On a single GPU (with more than 27GB RAM)
bash ./scripts/test_inference.sh <GPU_ID> ./tests/test_prompt.txt
2 years ago
# With quantization (with more than 15GB RAM)
bash ./scripts/test_inference_quantized.sh <GPU_ID> ./tests/test_prompt.txt
# On multiple GPUs (with more than 6GB RAM, need to first convert ckpt to MP_SIZE partitions)
bash ./scripts/convert_ckpt_parallel.sh <LOAD_CKPT_PATH> <SAVE_CKPT_PATH> <MP_SIZE>
bash ./scripts/test_inference_parallel.sh <MP_SIZE> ./tests/test_prompt.txt
```
### VS Code插件使用指南
基于CodeGeeX我们开发了一款免费的VS Code插件在应用市场搜索“codegeex”或通过[该链接](https://marketplace.visualstudio.com/items?itemName=aminer.codegeex)安装。详细的使用指南在[CodeGeeX插件使用指南](vscode-extension/README_zh.md).
## CodeGeeX: 多语言代码生成模型
**架构**CodeGeeX是一个基于transformers的大规模预训练编程语言模型。它是一个从左到右生成的自回归解码器将代码或自然语言标识符token作为输入预测下一个标识符的概率分布。CodeGeeX含有40个transformer层每层自注意力块的隐藏层维数为5120前馈层维数为20480总参数量为130亿。模型支持的最大序列长度为2048。
<img src="resources/en/codegeex_training.png">
<p align="center"><i><b>左侧:</b>CodeGeeX训练数据中各编程语言占比。
<b>右侧:</b>CodeGeeX训练损失函数随训练步数下降曲线。</i></p>
**语料**CodeGeeX的训练语料由两部分组成。第一部分是开源代码数据集[The Pile](https://pile.eleuther.ai/) 与 [CodeParrot](https://github.com/huggingface/transformers/tree/main/examples/research_projects/codeparrot)。The Pile包含GitHub上拥有超过100颗星的一部分开源仓库我们从中选取了23种编程语言的代码。第二部分是补充数据直接从GitHub开源仓库中爬取Python、Java、C++代码为了获取高质量数据我们根据以下准则选取代码仓库1)至少拥有1颗星2)总大小<10MB3)不在此前的开源代码数据集中。我们还去掉了符合下列任一条件的文件:1)平均每行长度大于100字符;2)由自动生成得到;3)含有的字母不足字母表内的40%4)大于100KB或小于1KB。为了让模型区分不同语言,我们在每个样本的开头加上一个前缀,其形式为``[注释符] language: [语言]``,例如:``# language: Python``。我们使用与GPT-2相同的分词器,并将空格处理为特殊标识符,词表大小为50400。整个代码语料含有23种编程语言、总计1587亿个标识符(不含填充符)。
### 国产平台实现与训练
我们在[Mindspore 1.7](https://www.mindspore.cn/)框架上实现了CodeGeeX模型并使用鹏城实验室的全国产计算平台上进行训练。具体来说CodeGeeX使用了其一个计算集群中的1536个昇腾910 AI处理器32GB进行了两个月左右的训练2022年4月18日至6月22日。除了Layer-norm与Softmax使用FP32格式以获得更高的精度与稳定性模型参数整体使用FP16格式最终整个模型需要占用约27GB显存。为了增加训练效率我们使用8路模型并行和192路数据并行的训练策略微批大小为16、全局批大小为3072并采用ZeRO-2优化器降低显存占用。
在开发与训练过程中我们和华为Mindspore团队合作对MindSpore框架进行了部分优化进而大幅度提升训练效率。比如我们发现矩阵乘法的计算时间占比仅为22.9%大量时间被用于各类其它算子因此实现了一系列算子融合包括单元素算子融合、层归一化算子融合、FastGelu与矩阵乘法融合、批量矩阵乘法与加法融合等再比如我们还对矩阵乘法算子的维度实现自动搜索调优使其搜索出效率最高的计算维度组合。这些优化为训练速度带来了显著提升在同等GPU卡数规模下128卡昇腾910对CodeGeeX这一模型的训练效率从约为NVIDIA A100的16.7%提升至43%在千卡规模下昇腾910训练效率相比自身优化前提升近300%。使用优化后的软硬件训练时CodeGeeX单日训练量可达到54.3B个标识符(含填充符),证明了国产深度学习平台与工具的快速迭代能力以及强大竞争力。
## HumanEval-X: 多语言代码生成基准
为了更好地评测代码生成模型的多语言生成能力我们构建了一个新基准HumanEval-X。此前多语言代码生成能力是基于语义相似度比如[CodeBLEU](https://arxiv.org/abs/2009.10297)衡量的具有一定误导性HumanEval-X则可用于衡量生成代码的功能正确性。HumanEval-X包含820个高质量手写样本覆盖Python、C++、Java、JavaScript、Go可用于多种任务。
<img src="resources/zh/hx_tasks_zh.png">
<p align="center"><i><b>HumanEval-X</b>支持的任务示例。<font style='background-color:#F8CECC'>声明</font><font style='background-color:#D5E8D4'>描述</font><font style='background-color:#DAE8FC'>解答</font>分别用红、绿、蓝色标注。<i>代码生成</i>将声明与描述作为输入,输出解答。<i>代码翻译</i>将两种语言的声明与源语言的解答作为输入,输出目标语言的解答。</i></p>
HumanEval-X中每个语言的样本包含了声明、描述和解答它们之间的组合可以支持不同的下游任务包括生成、翻译、概括等。我们目前关注两个任务**代码生成**与**代码翻译**。对于代码生成任务,模型将函数声明与文档字符串作为输入,输出函数实现;对于代码翻译任务,模型将两种语言的函数声明与源语言的实现作为输入,输出目标语言上的实现。我们在代码翻译任务中不将文档字符串输入模型,以避免模型直接通过描述生成答案。在两种任务下,我们都采用[Codex](https://arxiv.org/abs/2107.03374)所使用的无偏pass@k指标判断生成代码的功能正确性: $\text{pass}@k:= \mathbb{E}[1-\frac{\tbinom{n-c}{k}}{\tbinom{n}{k}}]$, $n=200$, $k\in(1,10,100)$.
### 多语言代码生成
<img src="resources/zh/hx_generattion_radar_horizon_zh.png">
<p align="center"><i><b>左侧</b>: HumanEval-X中五种语言具体的pass@kk=1,10,100性能。<b>右侧</b>: 模型在所有语言上的平均性能。CodeGeeX的平均表现优于InCoder-6.7B和CodeGen-Multi-6B/16B。</i></p>
我们将CodeGeeX与另外两个开源代码生成模型进行比较分别为Meta的[InCoder](https://github.com/dpfried/incoder)与Salesforce的[CodeGen](https://github.com/salesforce/CodeGen)选取InCoder-6.7B、CodeGen-Multi-6B 与 CodeGen-Multi-16B。CodeGeeX能获得最佳的平均性能显著超越了参数量更小的模型(7.5%~16.3%的提升)与参数量更大的模型CodeGen-Multi-16B表现相当平均性能 54.76% vs. 54.39%)。
### 跨语言代码翻译
<img src="resources/zh/hx_translation_zh.png">
<p align="center"><i>HumanEval-X上的<b>代码翻译</b>任务结果。<b>加粗</b>结果表示在每种语言pass@k上的最佳效果。</i></p>
我们还评测了模型在多语言间代码翻译上的性能。对于CodeGeeX我们评测了未经微调的CodeGeeX-13B与经过微调的CodeGeeX-13B-FT使用[XLCoST](https://github.com/reddy-lab-code-research/XLCoST)中代码翻译任务的训练集与一部分Go语言数据微调。如上表显示模型对特定语言存在偏好比如CodeGeeX擅长将其他语言翻译为Python与C++而CodeGen-Multi-16B擅长翻译为JavaScript和Go这可能是由于训练集中的语料占比存在差异。在20个翻译对中我们还观察到两种语言互相翻译的表现常常是呈负相关的这可能说明现有的模型还不足以学好所有的语言。
<details>
<summary><b>在线生成与翻译DEMO</b></summary>
<img src="resources/en/hx_examples.png">
我们为上述两个任务开发了DEMO<a href="https://models.aminer.cn/codegeex/zh-CN/playground" target="_blank">代码生成</a><a href="https://models.aminer.cn/codegeex/zh-CN/codeTranslator" target="_blank">代码翻译</a>,欢迎点击体验!
</details>
<details>
<summary><b>致谢</b></summary>
<br/>
这一项目由国家自然科学基金杰出青年科学基金项目No. 61825602支持。
#### 学生负责人
郑勤锴([清华大学知识工程实验室](https://keg.cs.tsinghua.edu.cn/glm-130b/zh/posts/glm-130b/)),夏箫(清华大学知识工程实验室),邹旭(清华大学知识工程实验室)
#### 技术贡献
清华大学知识工程实验室:曾奥涵,郑问迪,薛理龙
清华大学交叉信息学院:刘益枫,陈彦儒,徐奕辰(北邮大四访问清华期间研究工作)
鹏城实验室:陈庆玉,李忠琦,范高俊
智谱AI薛宇飞王山陕杰才姜皓瀚刘璐薛旋张鹏
华为昇腾团队:姚逸璠,苏腾,邓启辉,周斌
#### 数据标注
程锐杰清华大学于沛楠清华大学张竞尧智谱AI黄铂文智谱AI王炤宇智谱AI
#### 指导教师
[杨植麟](https://kimiyoung.github.io/)清华大学交叉信息学院东昱晓清华大学知识工程实验室陈文光清华大学PACMAN实验室[唐杰](http://keg.cs.tsinghua.edu.cn/jietang/)(清华大学知识工程实验室)
#### 计算资源支持
[鹏城实验室](https://www.pcl.ac.cn/index.html)
[智谱AI](https://www.zhipu.ai/)
#### 项目总负责
[唐杰](http://keg.cs.tsinghua.edu.cn/jietang/)(清华大学知识工程实验室 & 北京智源人工智能研究院)
</details>
2 years ago
如果遇到问题或有任何建议,欢迎通过邮件与我们联系[codegeex@aminer.cn](mailto:codegeex@aminer.cn).
### 许可证
代码使用[Apache-2.0许可证](LICENSE)