|
|
|
# coding=utf-8
|
|
|
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
"""Transformer based language model."""
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from codegeex.megatron import get_args
|
|
|
|
from codegeex.megatron import mpu, print_rank_0
|
|
|
|
from codegeex.megatron.model.module import MegatronModule
|
|
|
|
from codegeex.megatron.model.transformer import ParallelTransformer
|
|
|
|
from codegeex.megatron.model.utils import init_method_normal, scaled_init_method_normal
|
|
|
|
from codegeex.megatron.mpu.initialize import get_tensor_model_parallel_world_size
|
|
|
|
|
|
|
|
|
|
|
|
def get_shrink_embedding_gradient_alpha(iteration):
|
|
|
|
args = get_args()
|
|
|
|
|
|
|
|
alpha = args.shrink_embedding_gradient_alpha
|
|
|
|
if args.shrink_embedding_gradient_steps is None:
|
|
|
|
return alpha
|
|
|
|
else:
|
|
|
|
x1 = int(args.shrink_embedding_gradient_steps[0])
|
|
|
|
x2 = int(args.shrink_embedding_gradient_steps[1])
|
|
|
|
if iteration <= x1:
|
|
|
|
return alpha
|
|
|
|
elif iteration >= x1 + x2:
|
|
|
|
return 1.0
|
|
|
|
else:
|
|
|
|
return alpha + (1 - alpha) * (args.iteration - x1) / x2
|
|
|
|
|
|
|
|
|
|
|
|
def parallel_lm_logits(input_, word_embeddings_weight, parallel_output, bias=None):
|
|
|
|
"""LM logits using word embedding weights."""
|
|
|
|
# Parallel logits.
|
|
|
|
input_parallel = mpu.copy_to_tensor_model_parallel_region(input_)
|
|
|
|
# Matrix multiply.
|
|
|
|
args = get_args()
|
|
|
|
if args.shrink_logit_embedding_gradient:
|
|
|
|
if hasattr(args, 'iteration'):
|
|
|
|
alpha = get_shrink_embedding_gradient_alpha(args.iteration + 1)
|
|
|
|
else:
|
|
|
|
alpha = args.shrink_embedding_gradient_alpha
|
|
|
|
word_embeddings_weight = word_embeddings_weight if alpha == 1.0 \
|
|
|
|
else (
|
|
|
|
word_embeddings_weight * alpha +
|
|
|
|
word_embeddings_weight.detach() * (1 - alpha)
|
|
|
|
)
|
|
|
|
if bias is None:
|
|
|
|
logits_parallel = F.linear(input_parallel, word_embeddings_weight.half())
|
|
|
|
else:
|
|
|
|
logits_parallel = F.linear(input_parallel, word_embeddings_weight.half(), bias)
|
|
|
|
# Gather if needed.
|
|
|
|
if parallel_output:
|
|
|
|
return logits_parallel
|
|
|
|
|
|
|
|
return mpu.gather_from_tensor_model_parallel_region(logits_parallel)
|
|
|
|
|
|
|
|
|
|
|
|
def get_language_model(
|
|
|
|
num_tokentypes,
|
|
|
|
add_pooler,
|
|
|
|
init_method=None,
|
|
|
|
scaled_init_method=None,
|
|
|
|
):
|
|
|
|
"""Build language model and return along with the key to save."""
|
|
|
|
args = get_args()
|
|
|
|
|
|
|
|
if init_method is None:
|
|
|
|
init_method = init_method_normal(args.init_method_std)
|
|
|
|
|
|
|
|
if scaled_init_method is None:
|
|
|
|
scaled_init_method = scaled_init_method_normal(args.init_method_std, args.num_layers)
|
|
|
|
|
|
|
|
# Language model.
|
|
|
|
language_model = TransformerLanguageModel(
|
|
|
|
init_method=init_method,
|
|
|
|
output_layer_init_method=scaled_init_method,
|
|
|
|
num_tokentypes=num_tokentypes,
|
|
|
|
add_pooler=add_pooler)
|
|
|
|
# key used for checkpoints.
|
|
|
|
language_model_key = 'language_model'
|
|
|
|
|
|
|
|
return language_model, language_model_key
|
|
|
|
|
|
|
|
|
|
|
|
class Embedding(MegatronModule):
|
|
|
|
"""Language model embeddings.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
hidden_size: hidden size
|
|
|
|
vocab_size: vocabulary size
|
|
|
|
max_sequence_length: maximum size of sequence. This
|
|
|
|
is used for positional embedding
|
|
|
|
embedding_dropout_prob: dropout probability for embeddings
|
|
|
|
init_method: weight initialization method
|
|
|
|
num_tokentypes: size of the token-type embeddings. 0 value
|
|
|
|
will ignore this embedding
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
hidden_size,
|
|
|
|
vocab_size,
|
|
|
|
max_sequence_length,
|
|
|
|
embedding_dropout_prob,
|
|
|
|
init_method,
|
|
|
|
num_tokentypes=0,
|
|
|
|
):
|
|
|
|
super(Embedding, self).__init__()
|
|
|
|
|
|
|
|
args = get_args()
|
|
|
|
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.init_method = init_method
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
self.max_sequence_length = max_sequence_length
|
|
|
|
|
|
|
|
# Word embeddings (parallel).
|
|
|
|
self.word_embeddings = mpu.VocabParallelEmbedding(
|
|
|
|
vocab_size, self.hidden_size, init_method=self.init_method)
|
|
|
|
self._word_embeddings_key = 'word_embeddings'
|
|
|
|
|
|
|
|
self.vocab_size = vocab_size
|
|
|
|
|
|
|
|
# Position embedding (serial).
|
|
|
|
self.position_embeddings = torch.nn.Embedding(
|
|
|
|
max_sequence_length, self.hidden_size)
|
|
|
|
self.position_embeddings = self.position_embeddings.half()
|
|
|
|
self._position_embeddings_key = 'position_embeddings'
|
|
|
|
|
|
|
|
# Initialize the position embeddings.
|
|
|
|
self.init_method(self.position_embeddings.weight)
|
|
|
|
|
|
|
|
# Token type embedding.
|
|
|
|
# Add this as an optional field that can be added through
|
|
|
|
# method call so we can load a pretrain model without
|
|
|
|
# token types and add them as needed.
|
|
|
|
self._tokentype_embeddings_key = 'tokentype_embeddings'
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
|
|
|
|
self.hidden_size)
|
|
|
|
# Initialize the token-type embeddings.
|
|
|
|
self.init_method(self.tokentype_embeddings.weight)
|
|
|
|
else:
|
|
|
|
self.tokentype_embeddings = None
|
|
|
|
|
|
|
|
# Embeddings dropout
|
|
|
|
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
|
|
|
|
|
|
|
|
def add_tokentype_embeddings(self, num_tokentypes):
|
|
|
|
"""Add token-type embedding. This function is provided so we can add
|
|
|
|
token-type embeddings in case the pretrained model does not have it.
|
|
|
|
This allows us to load the model normally and then add this embedding.
|
|
|
|
"""
|
|
|
|
if self.tokentype_embeddings is not None:
|
|
|
|
raise Exception('tokentype embeddings is already initialized')
|
|
|
|
if torch.distributed.get_rank() == 0:
|
|
|
|
print('adding embedding for {} tokentypes'.format(num_tokentypes),
|
|
|
|
flush=True)
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
|
|
|
|
self.hidden_size)
|
|
|
|
# Initialize the token-type embeddings.
|
|
|
|
self.init_method(self.tokentype_embeddings.weight)
|
|
|
|
|
|
|
|
def forward(self, input_ids, position_ids, tokentype_ids=None):
|
|
|
|
# Embeddings.
|
|
|
|
words_embeddings = self.word_embeddings(input_ids)
|
|
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
|
|
embeddings = words_embeddings + position_embeddings
|
|
|
|
if tokentype_ids is not None:
|
|
|
|
assert self.tokentype_embeddings is not None
|
|
|
|
embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
|
|
|
|
else:
|
|
|
|
assert self.tokentype_embeddings is None
|
|
|
|
|
|
|
|
# Dropout.
|
|
|
|
embeddings = self.embedding_dropout(embeddings)
|
|
|
|
|
|
|
|
return embeddings
|
|
|
|
|
|
|
|
def state_dict_for_save_checkpoint(
|
|
|
|
self, destination=None, prefix='', keep_vars=False,
|
|
|
|
):
|
|
|
|
"""For easy load."""
|
|
|
|
|
|
|
|
state_dict_ = {}
|
|
|
|
state_dict_[self._word_embeddings_key] \
|
|
|
|
= self.word_embeddings.state_dict(destination, prefix, keep_vars)
|
|
|
|
state_dict_[self._position_embeddings_key] \
|
|
|
|
= self.position_embeddings.state_dict(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
state_dict_[self._tokentype_embeddings_key] \
|
|
|
|
= self.tokentype_embeddings.state_dict(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
|
|
|
|
return state_dict_
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict, strict=True):
|
|
|
|
"""Customized load."""
|
|
|
|
|
|
|
|
# Word embedding.
|
|
|
|
if self._word_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._word_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'word_embeddings' in key:
|
|
|
|
state_dict_[key.split('word_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
vocab_len = state_dict_['weight'].shape[0]
|
|
|
|
state_dict_["weight"] = state_dict_["weight"][:self.vocab_size // get_tensor_model_parallel_world_size()]
|
|
|
|
self.word_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Position embedding.
|
|
|
|
if self._position_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._position_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'position_embeddings' in key:
|
|
|
|
state_dict_[key.split('position_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
|
|
|
|
pos_len = state_dict_['weight'].shape[0]
|
|
|
|
max_seq_len = self.max_sequence_length
|
|
|
|
if pos_len < max_seq_len:
|
|
|
|
print_rank_0(f"Position embedding padded {pos_len} -> {max_seq_len}.")
|
|
|
|
position_embeddings_padded = torch.nn.Embedding(
|
|
|
|
max_seq_len - pos_len, self.hidden_size).half()
|
|
|
|
self.init_method(position_embeddings_padded.weight)
|
|
|
|
state_dict_['weight'] = torch.cat([state_dict_['weight'], position_embeddings_padded.weight], dim=0)
|
|
|
|
|
|
|
|
# self.position_embeddings = self.position_embeddings.half()
|
|
|
|
self.position_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Tokentype embedding.
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
state_dict_ = {}
|
|
|
|
if self._tokentype_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._tokentype_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'tokentype_embeddings' in key:
|
|
|
|
state_dict_[key.split('tokentype_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
if len(state_dict_.keys()) > 0:
|
|
|
|
self.tokentype_embeddings.load_state_dict(state_dict_,
|
|
|
|
strict=strict)
|
|
|
|
else:
|
|
|
|
print('***WARNING*** expected tokentype embeddings in the '
|
|
|
|
'checkpoint but could not find it', flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
class EmbeddingPipe(Embedding):
|
|
|
|
def forward(self, inputs, **kwargs):
|
|
|
|
if not hasattr(self, "_args"):
|
|
|
|
self._args = get_args()
|
|
|
|
|
|
|
|
input_ids = inputs[0]
|
|
|
|
position_ids = inputs[1]
|
|
|
|
if hasattr(self._args, "attn_mask"):
|
|
|
|
attention_mask = None
|
|
|
|
else:
|
|
|
|
attention_mask = inputs[2]
|
|
|
|
|
|
|
|
if len(inputs) == 4:
|
|
|
|
tokentype_ids = inputs[3]
|
|
|
|
else:
|
|
|
|
tokentype_ids = None
|
|
|
|
|
|
|
|
embeddings = super().forward(
|
|
|
|
input_ids, position_ids, tokentype_ids=tokentype_ids
|
|
|
|
)
|
|
|
|
|
|
|
|
# If cmd args has attn_mask, we don't forward it as an activation.
|
|
|
|
if hasattr(self._args, "attn_mask"):
|
|
|
|
return embeddings
|
|
|
|
else:
|
|
|
|
assert False
|
|
|
|
return embeddings, attention_mask
|
|
|
|
|
|
|
|
@property
|
|
|
|
def word_embeddings_weight(self):
|
|
|
|
"""Easy accessory for the DeepSpeed pipeline engine to tie embeddings across stages."""
|
|
|
|
return self.word_embeddings.weight
|
|
|
|
|
|
|
|
|
|
|
|
class QueryEmbedding(MegatronModule):
|
|
|
|
"""Language model embeddings.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
hidden_size: hidden size
|
|
|
|
vocab_size: vocabulary size
|
|
|
|
max_sequence_length: maximum size of sequence. This
|
|
|
|
is used for positional embedding
|
|
|
|
embedding_dropout_prob: dropout probability for embeddings
|
|
|
|
init_method: weight initialization method
|
|
|
|
num_tokentypes: size of the token-type embeddings. 0 value
|
|
|
|
will ignore this embedding
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
hidden_size,
|
|
|
|
vocab_size,
|
|
|
|
max_sequence_length,
|
|
|
|
embedding_dropout_prob,
|
|
|
|
init_method,
|
|
|
|
num_tokentypes=0):
|
|
|
|
super(QueryEmbedding, self).__init__()
|
|
|
|
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
self.init_method = init_method
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
self.max_sequence_length = max_sequence_length
|
|
|
|
|
|
|
|
# Top query position embedding (serial).
|
|
|
|
self.top_query_embeddings = mpu.VocabParallelEmbedding(
|
|
|
|
max_sequence_length, self.hidden_size, init_method=self.init_method)
|
|
|
|
self.top_query_embeddings = self.top_query_embeddings.half()
|
|
|
|
self._top_query_embeddings_key = 'top_query_embeddings'
|
|
|
|
|
|
|
|
# Initialize the top query position embeddings.
|
|
|
|
self.init_method(self.top_query_embeddings.weight)
|
|
|
|
|
|
|
|
# Token type embedding.
|
|
|
|
# Add this as an optional field that can be added through
|
|
|
|
# method call so we can load a pretrain model without
|
|
|
|
# token types and add them as needed.
|
|
|
|
self._tokentype_embeddings_key = 'tokentype_embeddings'
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
|
|
|
|
self.hidden_size)
|
|
|
|
# Initialize the token-type embeddings.
|
|
|
|
self.init_method(self.tokentype_embeddings.weight)
|
|
|
|
else:
|
|
|
|
self.tokentype_embeddings = None
|
|
|
|
|
|
|
|
# Embeddings dropout
|
|
|
|
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)
|
|
|
|
|
|
|
|
def add_tokentype_embeddings(self, num_tokentypes):
|
|
|
|
"""Add token-type embedding. This function is provided so we can add
|
|
|
|
token-type embeddings in case the pretrained model does not have it.
|
|
|
|
This allows us to load the model normally and then add this embedding.
|
|
|
|
"""
|
|
|
|
if self.tokentype_embeddings is not None:
|
|
|
|
raise Exception('tokentype embeddings is already initialized')
|
|
|
|
if torch.distributed.get_rank() == 0:
|
|
|
|
print('adding embedding for {} tokentypes'.format(num_tokentypes),
|
|
|
|
flush=True)
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
|
|
|
|
self.hidden_size)
|
|
|
|
# Initialize the token-type embeddings.
|
|
|
|
self.init_method(self.tokentype_embeddings.weight)
|
|
|
|
|
|
|
|
def forward(self, position_ids, tokentype_ids=None):
|
|
|
|
# Embeddings.
|
|
|
|
|
|
|
|
embeddings = self.top_query_embeddings(position_ids)
|
|
|
|
if tokentype_ids is not None:
|
|
|
|
assert self.tokentype_embeddings is not None
|
|
|
|
embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
|
|
|
|
else:
|
|
|
|
assert self.tokentype_embeddings is None
|
|
|
|
|
|
|
|
# Dropout.
|
|
|
|
embeddings = self.embedding_dropout(embeddings)
|
|
|
|
|
|
|
|
return embeddings
|
|
|
|
|
|
|
|
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
|
|
|
|
keep_vars=False):
|
|
|
|
"""For easy load."""
|
|
|
|
|
|
|
|
state_dict_ = {}
|
|
|
|
state_dict_[self._top_query_embeddings_key] \
|
|
|
|
= self.top_query_embeddings.state_dict(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
state_dict_[self._tokentype_embeddings_key] \
|
|
|
|
= self.tokentype_embeddings.state_dict(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
|
|
|
|
return state_dict_
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict, strict=True):
|
|
|
|
"""Customized load."""
|
|
|
|
|
|
|
|
# Position embedding.
|
|
|
|
if self._top_query_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._top_query_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'top_query_embeddings' in key:
|
|
|
|
state_dict_[key.split('top_query_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
pos_len = state_dict_['weight'].shape[0]
|
|
|
|
max_seq_len = self.max_sequence_length // get_tensor_model_parallel_world_size()
|
|
|
|
if pos_len < max_seq_len:
|
|
|
|
print_rank_0(f"Top query embedding padded {pos_len} -> {max_seq_len}.")
|
|
|
|
top_query_embeddings_padded = torch.nn.Embedding(
|
|
|
|
max_seq_len - pos_len, self.hidden_size).half()
|
|
|
|
self.init_method(top_query_embeddings_padded.weight)
|
|
|
|
state_dict_['weight'] = torch.cat([state_dict_['weight'], top_query_embeddings_padded.weight], dim=0)
|
|
|
|
self.top_query_embeddings.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Tokentype embedding.
|
|
|
|
if self.num_tokentypes > 0:
|
|
|
|
state_dict_ = {}
|
|
|
|
if self._tokentype_embeddings_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._tokentype_embeddings_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'tokentype_embeddings' in key:
|
|
|
|
state_dict_[key.split('tokentype_embeddings.')[1]] \
|
|
|
|
= state_dict[key]
|
|
|
|
if len(state_dict_.keys()) > 0:
|
|
|
|
self.tokentype_embeddings.load_state_dict(state_dict_,
|
|
|
|
strict=strict)
|
|
|
|
else:
|
|
|
|
print('***WARNING*** expected tokentype embeddings in the '
|
|
|
|
'checkpoint but could not find it', flush=True)
|
|
|
|
|
|
|
|
|
|
|
|
class QueryEmbeddingPipe(QueryEmbedding):
|
|
|
|
def forward(self, inputs, **kwargs):
|
|
|
|
if not hasattr(self, "_args"):
|
|
|
|
self._args = get_args()
|
|
|
|
|
|
|
|
position_ids = inputs[0]
|
|
|
|
if hasattr(self._args, "attn_mask"):
|
|
|
|
attention_mask = None
|
|
|
|
else:
|
|
|
|
attention_mask = inputs[1]
|
|
|
|
|
|
|
|
if len(inputs) == 3:
|
|
|
|
tokentype_ids = inputs[2]
|
|
|
|
else:
|
|
|
|
tokentype_ids = None
|
|
|
|
|
|
|
|
embeddings = super().forward(
|
|
|
|
position_ids, tokentype_ids=tokentype_ids,
|
|
|
|
)
|
|
|
|
|
|
|
|
# If cmd args has attn_mask, we don't forward it as an activation.
|
|
|
|
if hasattr(self._args, "attn_mask"):
|
|
|
|
return embeddings
|
|
|
|
else:
|
|
|
|
assert False
|
|
|
|
return embeddings, attention_mask
|
|
|
|
|
|
|
|
@property
|
|
|
|
def word_embeddings_weight(self):
|
|
|
|
"""Easy accessory for the DeepSpeed pipeline engine to tie embeddings across stages."""
|
|
|
|
return self.top_query_embeddings.weight
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerLanguageModel(MegatronModule):
|
|
|
|
"""Transformer language model.
|
|
|
|
|
|
|
|
Arguments:
|
|
|
|
transformer_hparams: transformer hyperparameters
|
|
|
|
attention_mask_func: a function that takes `unmaksed-attention-scores`
|
|
|
|
with size [b, np, s, s] and an `attention-mask` and will apply
|
|
|
|
the masking. The function should return a masked score of the
|
|
|
|
same size [b, np, s, s].
|
|
|
|
masked-attention-scores = attention_mask_func(
|
|
|
|
unmaksed-attention-scores, attention-mask)
|
|
|
|
vocab_size: vocabulary size
|
|
|
|
max_sequence_length: maximum size of sequence. This
|
|
|
|
is used for positional embedding
|
|
|
|
embedding_dropout_prob: dropout probability for embeddings
|
|
|
|
num_tokentypes: size of the token-type embeddings. 0 value
|
|
|
|
will ignore this embedding
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
init_method,
|
|
|
|
output_layer_init_method,
|
|
|
|
num_tokentypes=0,
|
|
|
|
add_pooler=False):
|
|
|
|
super(TransformerLanguageModel, self).__init__()
|
|
|
|
args = get_args()
|
|
|
|
|
|
|
|
self.hidden_size = args.hidden_size
|
|
|
|
self.num_tokentypes = num_tokentypes
|
|
|
|
self.init_method = init_method
|
|
|
|
self.add_pooler = add_pooler
|
|
|
|
|
|
|
|
# Embeddings
|
|
|
|
self.embedding = Embedding(self.hidden_size,
|
|
|
|
args.padded_vocab_size,
|
|
|
|
args.max_position_embeddings,
|
|
|
|
args.hidden_dropout,
|
|
|
|
self.init_method,
|
|
|
|
self.num_tokentypes)
|
|
|
|
self._embedding_key = 'embedding'
|
|
|
|
|
|
|
|
# Query embeddings
|
|
|
|
self.topQueryEmbedding = QueryEmbedding(self.hidden_size,
|
|
|
|
args.padded_vocab_size,
|
|
|
|
args.max_position_embeddings,
|
|
|
|
args.hidden_dropout,
|
|
|
|
self.init_method,
|
|
|
|
self.num_tokentypes)
|
|
|
|
self._topQueryEmbedding_key = 'topQueryEmbedding'
|
|
|
|
|
|
|
|
# Transformer
|
|
|
|
self.transformer = ParallelTransformer(
|
|
|
|
self.init_method,
|
|
|
|
output_layer_init_method)
|
|
|
|
self._transformer_key = 'transformer'
|
|
|
|
|
|
|
|
def set_input_tensor(self, input_tensor):
|
|
|
|
"""See megatron.model.transformer.set_input_tensor()"""
|
|
|
|
self.transformer.set_input_tensor(input_tensor)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids,
|
|
|
|
position_ids,
|
|
|
|
attention_mask,
|
|
|
|
tokentype_ids=None,
|
|
|
|
layer_past=None,
|
|
|
|
get_key_value=False,
|
|
|
|
pooling_sequence_index=0,
|
|
|
|
prompt_length=None,
|
|
|
|
context_length=None,
|
|
|
|
):
|
|
|
|
|
|
|
|
# Embeddings.
|
|
|
|
embedding_output = self.embedding(input_ids, position_ids,
|
|
|
|
tokentype_ids=tokentype_ids)
|
|
|
|
query_position_ids = position_ids
|
|
|
|
queryEmbedding_out = self.topQueryEmbedding(query_position_ids,
|
|
|
|
tokentype_ids=tokentype_ids)
|
|
|
|
|
|
|
|
# Transformer.
|
|
|
|
transformer_output = self.transformer(embedding_output,
|
|
|
|
queryEmbedding_out,
|
|
|
|
attention_mask,
|
|
|
|
layer_past=layer_past,
|
|
|
|
get_key_value=get_key_value,
|
|
|
|
prompt_length=prompt_length,
|
|
|
|
context_length=context_length, )
|
|
|
|
|
|
|
|
return transformer_output
|
|
|
|
|
|
|
|
def state_dict_for_save_checkpoint(self, destination=None, prefix='',
|
|
|
|
keep_vars=False):
|
|
|
|
"""For easy load."""
|
|
|
|
|
|
|
|
state_dict_ = {}
|
|
|
|
state_dict_[self._embedding_key] \
|
|
|
|
= self.embedding.state_dict_for_save_checkpoint(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
state_dict_[self._topQueryEmbedding_key] \
|
|
|
|
= self.topQueryEmbedding.state_dict_for_save_checkpoint(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
state_dict_[self._transformer_key] \
|
|
|
|
= self.transformer.state_dict_for_save_checkpoint(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
if self.add_pooler:
|
|
|
|
state_dict_[self._pooler_key] \
|
|
|
|
= self.pooler.state_dict_for_save_checkpoint(
|
|
|
|
destination, prefix, keep_vars)
|
|
|
|
|
|
|
|
return state_dict_
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict, strict=True):
|
|
|
|
"""Customized load."""
|
|
|
|
|
|
|
|
# Embedding.
|
|
|
|
if self._embedding_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._embedding_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if '_embeddings' in key:
|
|
|
|
state_dict_[key] = state_dict[key]
|
|
|
|
self.embedding.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
if self._topQueryEmbedding_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._topQueryEmbedding_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if '_embeddings' in key:
|
|
|
|
state_dict_[key] = state_dict[key]
|
|
|
|
self.topQueryEmbedding.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Transformer.
|
|
|
|
if self._transformer_key in state_dict:
|
|
|
|
state_dict_ = state_dict[self._transformer_key]
|
|
|
|
else:
|
|
|
|
# for backward compatibility.
|
|
|
|
state_dict_ = {}
|
|
|
|
for key in state_dict.keys():
|
|
|
|
if 'transformer.' in key:
|
|
|
|
state_dict_[key.split('transformer.')[1]] = state_dict[key]
|
|
|
|
self.transformer.load_state_dict(state_dict_, strict=strict)
|
|
|
|
|
|
|
|
# Pooler.
|
|
|
|
if self.add_pooler:
|
|
|
|
assert 'pooler' in state_dict, \
|
|
|
|
'could not find data for pooler in the checkpoint'
|
|
|
|
self.pooler.load_state_dict(state_dict[self._pooler_key],
|
|
|
|
strict=strict)
|